DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST MASTER'S OPTION EXAM - APPLIED MATH August 2009

Do 5 of the following questions. Each question carries the same weight. Passing level is 60% and at least two questions substantially correct.

1. Consider the linear ODE

$$
2 x \frac{d y}{d x}+y=f(x), \quad \text { for } x \geq 0
$$

in which f is a smooth and strictly negative function. Show that it is not possible for any solution $y(x)$ to have a finite and positive initial value $y(0)$. How do the positive solutions behave as x approaches 0 ?
2. A nonlinear oscillator with displacement $x \in R^{1}$ is governed by the DE :

$$
\frac{d^{2} x}{d t^{2}}+\frac{d V}{d x}=0, \quad \text { with potential } \quad V=\frac{1}{2} x^{2}-\frac{1}{3} x^{3}
$$

(a) Reformulate this dynamical equation as a two-dimensional system of first-order equations. Determine the equilibrium points of the system.
(b) Analyze the stability of each equilibrium point and sketch the entire phase portrait.
(c) Find a function $H=H(x, \dot{x})$ on the phase plane that is constant on each solution trajectory.
3. Consider the competing species model governing the evolution of two ecological species quantified by x_{1} and x_{2} (with $x_{1}, x_{2} \geq 0$):

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =r_{1}\left(1-\frac{x_{1}}{k_{1}}\right) x_{1}-c_{1} x_{1} x_{2} \\
\frac{d x_{2}}{d t} & =r_{2}\left(1-\frac{x_{2}}{k_{2}}\right) x_{2}-c_{2} x_{1} x_{2}
\end{aligned}
$$

(a) Interpret the positive constants r_{i}, k_{i} and $c_{i}(i=1,2)$, and describe the meaning of the model's terms that are scaled by these constants.
(b) In the case of "weak competition" when $c_{1}<r_{1} / k_{2}$ and $c_{2}<r_{2} / k_{1}$, determine the qualitative behavior of solutions as $t \rightarrow+\infty$? What does this behavior mean in ecological terms? Do find the nullclines and equilibrium point(s) and sketch them, but do not carry out a full stability analysis of the equilibrium point(s) [because the algebra is too messy.]
4. (a) Provide a complete derivation of the Laplace operator in polar coordinates in R^{2}. That is, show that the operator $u \mapsto \triangle u=\partial^{2} u / \partial x^{2}+\partial^{2} u / \partial y^{2}$ converts to

$$
u \mapsto \Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

(b) Solve the following boundary value problem:

$$
\begin{aligned}
& \Delta u=0 \quad \text { in } \quad 0 \leq r<a, \quad 0 \leq \theta<2 \pi, \\
& u=\sin ^{2} \theta \quad \text { on } \quad r=a .
\end{aligned}
$$

5. The probability density function (PDF) $u(x, t)$ for an elastically bound particle evolves according to the equation

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+\gamma \frac{\partial(x u)}{\partial x}
$$

for $-\infty<x<\infty$ and $t>0$, where D and γ are positive constants. Verify that for all $t>0$, the solution $u(x, t)$ is a PDF provided the data $u(x, 0)$ is. A function $v(x)$ is a PDF if and only if it satisfies both conditions

$$
v(x) \geq 0 \quad \text { and } \quad \int_{-\infty}^{+\infty} v(x) d x=1
$$

6. The "shallow water equations" approximate the motion of a thin layer of incompressible and inviscid fluid in the presence of gravity. In one space dimension they are the following pair of nonlinear PDEs:

$$
\begin{gathered}
\frac{\partial h}{\partial t}+u \frac{\partial h}{\partial x}=-h \frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=-g \frac{\partial h}{\partial x}
\end{gathered}
$$

for a pair of unknowns, $h=h(x, t), u=u(x, t)$ that represent the water surface height and the fluid velocity (in the x direction). The constant g is the gravitational acceleration.
(a) Consider motions that are small perturbations around the uniform, undisturbed state $h=H, u=0$, where H is a constant water height. In terms of the perturbation variables $\eta \doteq h-H$ and u, derive the linearized equations of motion (in which terms of higher order than the first in the perturbations are neglected).
(b) Show that this pair of linear first-order PDEs in the variables $\eta \doteq h-H$ and u are equivalent to a single, second-order PDE in η; namely, the wave equation

$$
\frac{\partial^{2} \eta}{\partial t^{2}}-c^{2} \frac{\partial^{2} \eta}{\partial x^{2}}=0
$$

Give a formula for the wave speed c in terms of g and H.
7. The viscous Burgers' equation for $u(x, t)$,

$$
u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=\epsilon u_{x x}, \quad\left(x \in R^{1}, t>0\right)
$$

is a fundamental equation for nonlinear viscous flows.
(a) Make the substitution

$$
w(x, t)=\int_{-\infty}^{x} u(\xi, t) d \xi
$$

and derive the PDE satisfied by $w(x, t)$.
(b) Now make the substitution

$$
w(x, t)=\alpha \log \phi(x, t), \quad \text { where } \alpha \text { is a positive constant, }
$$

and derive an equivalent PDE for ϕ.
(c) Conclude that for an appropriate choice of constant α, solutions u of Burgers' equation are in 1-1 correspondence with solutions ϕ of the heat equation. This is known as the "Cole-Hopf transformation."

