Complex analysis qualifying exam

Department of Mathematics and Statistics
University of Massachusetts, Amherst

August 29, 2013

Do 8 out of the following 10 questions.

Each question is worth 10 points. To pass at the Master's level it is sufficient to have 45 points with 3 questions essentially correct. To pass at the PhD level it is sufficient to have 55 points with 4 questions essentially correct.

Note: All answers should be justified carefully.
(1) (10 points) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function such that $\frac{f(z)}{z} \rightarrow 0$ as $|z| \rightarrow \infty$. Prove that f is constant.
(2) (a) (2 points) State Rouché's theorem.
(b) (8 points) Consider the function

$$
f: \mathbb{C} \rightarrow \mathbb{C}, \quad f(z)=z^{5}+e^{z}+4
$$

Let

$$
\Omega=\{z=x+i y \in \mathbb{C} \mid x<0\} \subset \mathbb{C},
$$

the left half plane. Show that f has exactly 3 zeroes in Ω (counting multiplicities).
(3) (a) (5 points) Let

$$
\Omega_{1}=\{z=x+i y \in \mathbb{C} \mid 0<y<1\},
$$

a horizontal strip, and

$$
\Omega_{2}=\{z=x+i y \in \mathbb{C} \mid x>0 \text { and } y>0\},
$$

the positive quadrant. Find a holomorphic bijection $f: \Omega_{1} \rightarrow \Omega_{2}$.
(b) (5 points) Let

$$
\Omega_{3}=\{z \in \mathbb{C}| | z-1 \mid<1 \text { and }|z-i|<1\}
$$

(a "lune"). Find a holomorphic bijection $g: \Omega_{3} \rightarrow \Omega_{2}$.
(4) (a) (2 points) Let $\Omega \subset \mathbb{C}$ be an open set, $a \in \Omega$ a point, and

$$
f: \Omega \backslash\{a\} \rightarrow \mathbb{C}
$$

a holomorphic function. Define the residue of f at a.
(b) Let γ denote the circle with center the origin and radius 3, traversed once counterclockwise. Compute the following contour integrals.
i. (4 points)

$$
\int_{\gamma} \frac{z^{2}}{(z-2)(z+1)^{2}} d z
$$

ii. (4 points)

$$
\int_{\gamma} \frac{e^{z}}{\sin z} d z
$$

(5) (10 points) Compute the improper integral

$$
\int_{-\infty}^{\infty} \frac{1}{x^{6}+1} d x
$$

(6) Let f be a one-to-one holomorphic map from a region Ω_{1} onto a region Ω_{2}. Assume that the closure of the disc $D:=\left\{z:\left|z-z_{0}\right|<\epsilon\right\}$ is contained in Ω_{1}. Prove that the inverse function $f^{-1}: f(D) \rightarrow D$ is given by the integral formula

$$
f^{-1}(\omega)=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=\epsilon} \frac{f^{\prime}(z)}{f(z)-\omega} \cdot z d z
$$

(7) Let Ω be a connected open subset of the complex plane and $f_{n}(z), n \geq$ 1 , a sequence of holomorphic and nowhere vanishing functions on Ω. Assume that the sequence $f_{n}(z)$ converges to a function $f(z)$, uniformly on every compact subset of Ω. Prove that f is either identically zero, or never equal to zero in Ω.
(8) Let $f(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ be a polynomial of degree $n>0$. Prove that

$$
\frac{1}{2 \pi i} \int_{C} z^{n-1}|f(z)|^{2} d z=a_{0} \overline{a_{n}} R^{2 n}
$$

where C is the circle $|z|=R$ traversed once counterclockwise.
(9) Let C be the circle $\{|z|=2\}$ traversed counter-clockwise. Compute $\int_{C} \frac{z^{2 n} \cos (1 / z)}{1-z^{n}} d z$ for all integers $n \geq 2$.
(10) Prove or disprove the following statements.
(a) Let U be a simply connected open subset of the complex plane. For any two points p, q in U there exists a one-to-one holomorphic map from U onto itself such that $f(p)=q$.
(b) For any open subset W of the complex plane, any harmonic function on W is the real part of a holomorphic function on W.
(c) If f and g are meromorphic on the complex plane, then so is the composition $f \circ g$.

