Department of Mathematics and Statistics
University of Massachusetts
Basic Exam - Complex Analysis
January 11, 2010
Provide solution for eight of the following ten problems. Indicate clearly which problems you want graded. Each problem is worth 10 points.
Passing standard: To pass at the Master's level it is sufficient to have 45 points with 3 essentially correct solutions. To pass at the Ph. D level it is sufficient to have 55 points with 4 essentially correct solutions.

1. Let f be a holomorphic automorphism of $\mathbb{C}^{*}=\mathbb{C}-\{0\}$. Show that there is a number $a \in \mathbb{C}^{*}$ such that either $f(z)=a z$ or $f(z)=a z^{-1}$.
2. Consider the polynomial $P(z)=2 z^{5}-2 z^{3}+z-7$.
(a) Show that it has no zeros in the disc $|z| \leq 1$.
(b) Find the number of its zeros in the disc $|z| \leq 2$.
(c) How many zeros does it have in the annulus $100<|z|<1000$?
3. Carefully state and prove the Liouville theorem on entire functions.
4. Suppose that $f(z)$ is continuous on the unit disc $D=\{z \in \mathbb{C}:|z|<1\}$ and that it is holomorphic on $D-\mathbb{R}=\{z \in \mathbb{C}:|z|<1$ and $z \notin \mathbb{R}\}$. Prove that f is then holomorphic on all of D.
5. Find the Laurent expansion of

$$
f(z)=\frac{z^{2}+z-1}{(z+2)(z-1)^{2}}
$$

in an annulus (centered at the origin) that contains $\sqrt{3}$. What is the largest possible annulus on which this expansion is valid?
6. Calculate the following integral using residues

$$
\int_{0}^{\infty} \frac{x \sin (x)}{x^{2}+1} d x
$$

Justify your calculation.
7. Calculate the following integral using residues

$$
\int_{-\infty}^{+\infty} \frac{x}{\left(x^{2}-2 x+5\right)^{2}} d x
$$

Justify your calculation.
8. If $f \neq 0$ is an entire function and $|f(z)| \leq\left|z^{3}+z^{2}+z+1\right|$ for all $z \in \mathbb{C}$, find

$$
\frac{f(1)+f(-1)}{2 f(0)}
$$

9. Let $f: D \rightarrow S$ be a conformal bijection between the disc $D=\{z:|z|<1\}$ and the square $S=\{z+i y:|x|<1$ and $|y|<1\}$. Prove that if $f(0)=0$ then $-f(z)=f(-z)$.
10. Find a conformal map that maps the semi-disc

$$
S=\{z:|z|<1 \text { and } \operatorname{Re}(z)>0\}
$$

to the first quadrant

$$
Q=\{z: \operatorname{Re}(z)>0 \text { and } \operatorname{Im}(z)>0\}
$$

and sends the points

$$
A=i, \quad B=-i, \quad C=1
$$

to

$$
A^{\prime}=\infty, \quad B^{\prime}=0, \quad C^{\prime}=1
$$

respectively.

