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Do eight out of the following 10 questions. Each question is worth 10 points.
To pass at the Master’s level it is sufficient to have 45 points, with 3 questions essentially
correct; 55 points with 4 questions essentially correct are sufficient for passing at the
Ph.D. level.

Note: All answers should be justified.

1. Prove that there does not exist a one-to-one conformal map from the punctured
unit disc {z : 0 < |z| < 1} onto the annulus A = {z : 1 < |z| < 2}.

2. Find a one-to-one conformal map from the region {z : 1 < |z| < 2, and Re(z) > 0}
onto the rectangle {x + iy : 0 < x < π and 0 < y < ln(2)}

3. State and prove the Swartz Lemma.

4. (a) Find the Laurent series expansion of the function f(z) =
1

z2 − 4z + 3
valid

near and centered at z0 = 1. For what values of z does the series converges?

(b) Find the radius of convergence R of the Taylor series about z = 1 of the
function

f(z) =
1

1 + z2 + z4 + z6 + z8 + z10
.

Express the answer explicitly as a real number.

5. Let f(z) be an analytic function on the punctured complex plane C\{0}, satisfying

|f(z)| ≥ 1

|z|d
,

for some real number d. Show that d must be an integer and there exists a constant
c ∈ C, such that f(z) = cz−d.
Hint: Reduce to the case 0 < d ≤ 1 and analyze the singularities of f .

6. Prove that every one-to-one holomorphic map f from the upper-half-plane H :=
{x + iy : x, y ∈ R, y > 0} onto itself is a fractional linear transformation with
real coefficients and positive determinant. That is, f can be written in the form:

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ R, and ad− bc = 1.

7. (a) Prove that the series
∞∑

n=−∞

1

(z − n)2

defines a meromorphic function f(z), periodic with period 1, over the complex
plane.
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(b) Prove that the function g(z) := f(z)− π2

sin2(πz)
is an entire function.

8. Evaluate the following integrals

(a)

∫
C

cos(z)dz

z2(z5 − 1)
, where C is the circle {|z| = 1

2
}.

(b)

∫
C

z4 cos(1/z)

z5 + 1
dz where C is the circle {|z| = 3}.

9. Evaluate the integral

∫ ∞

0

cos(x)dx

x2 + 4
. Justify all your steps!!!

10. Let f be a non-constant entire function and C := {z : |z| = 1} the unit
circle. Suppose |f(z)| = 1, for all z ∈ C. Prove that the winding number

W (f(C), 0) :=
1

2πi

∫
C

f ′(z)dz

f(z)
is positive.
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