DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST
 BASIC NUMERIC ANALYSIS EXAM
 JANUARY 2009

Do five of the following problems. All problems carry equal weight.
Passing level:
Masters: 60% with at least two substantially correcct
PhD: 75% with at least three substantially correct.

1. Suppose one were to use Newton's method to approximate \sqrt{a}, where $a>0$, by finding the positive root of $f(x)=x^{2}-a=0$. Assume the initial guess x_{0} satisfies $x_{0}>0$ and $x_{0} \neq \sqrt{a}$. Prove the following:
(a) $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$
(b) $x_{n+1}^{2}-a=\left(\frac{x_{n}^{2}-a}{2 x_{n}}\right)^{2}$ for $n \geq 0$, and therefore $x_{n}>\sqrt{a}$ for all $a>0$.
(c) The iterates $\left\{x_{n}\right\}_{n=0}^{\infty}$ are a strictly decreasing sequence for $n \geq 1$. Hint: Consider the sign of $x_{n+1}-x_{n}$.
2. Let $f(x)$ be a step function defined on $[-1,1]$ as follows,

$$
f(x)=\left\{\begin{array}{lr}
1, & x \in[-1,0] \\
-1, & x \in(0,1]
\end{array}\right.
$$

(a) Find the interpolation polynomials of degree zero (denoted as $p_{0}(x)$), degree one (denoted as $p_{1}(x)$), and degree two (denoted as $p_{2}(x)$), for $f(x)$ on $[-1,1]$. Suppose that equispaced interpolation points are used. To be more specific, the interpolation point sets are $\{0\},\{-1,1\}$, and $\{-1,0,1\}$ for $p_{0}(x), p_{1}(x), p_{2}(x)$ respectively.
(b) Compute the maximum errors of these three interpolations.
(c) Is the polynomial interpolation on equispaced points convergent for $f(x)$ in terms of the maximum error? Why? (Hint: Show the error is bounded from below.)
3. Again, consider the step function $f(x)$ defined on $[-1,1]$ as follows,

$$
f(x)=\left\{\begin{array}{lr}
1, & x \in[-1,0] \\
-1, & x \in(0,1]
\end{array}\right.
$$

(a) Find the constant, linear, and quadratic least square approximate $p_{0}(x), p_{1}(x)$, and $p_{2}(x)$ to $f(x)$ on $[-1,1]$.
(b) Compute the L^{2} errors of these three least square approximates.
4. Derive the 2 node Gauss-Legendre quadrature formula

$$
\int_{-1}^{1} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)
$$

So you must find $x_{1}, x_{2}, c_{1}, c_{2}$. Recall, the second degree Legendre polynomial is $P_{2}(x)=$ $x^{2}-1 / 3$.
5. Consider the numeric scheme

$$
\begin{aligned}
k_{1} & =f\left(x_{n}, y_{n}\right) \\
k_{2} & =f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{1}\right) \\
y_{n+1} & =y_{n}+h k_{2}
\end{aligned}
$$

for the ODE $d y / d x=f(x, y)$. Show that is a second order scheme and compute the leading term of the truncation error.
6. Suppose A is a real $n \times n$ symmetric matrix, i.e. $A \in \mathbb{R}^{n \times n}$ and $A^{T}=A$.
(a) Define what is means for A to be positive definite.
(b) Suppose also that A is positive definite. Prove that the diagonal entries of A are all positive.
(c) Suppose also that A is positive definite. Prove that the largest entry of A in absolute value lies on the diagonal.
7. When solving the one-dimensional heat equation with a second-order central difference scheme, an example resultant linear system after imposing boundary conditions takes the following form.

$$
\begin{aligned}
& -4 x_{1}+x_{2} \quad=1 \\
& x_{1}-4 x_{2} \quad+x_{3}=-3 \\
& x_{2}-4 x_{3}=-3
\end{aligned}
$$

(a) Find the $\mathbf{L U}$ decomposition of the coefficient matrix of the above system.
(b) Solve the system with the LU decomposition obtained in (a).

