DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS
 BASIC EXAM - NUMERICS
 August, 2004

Do five of the following problems. All problems carry equal weight.
Passing level:
Masters: 60% with at least two substantially correct.
Ph.D.: 75% with at least three substantially correct.

1. The equation $x^{2}-a=0$ (for the square root $\alpha=\sqrt{a}$) can be written equivalently in the form $x=\phi(x)$ in many different ways, for example,
(a) $\phi(x)=\frac{1}{2}\left(x+\frac{a}{x}\right)$
(b) $\phi(x)=\frac{a}{x}$
(c) $\phi(x)=2 x-\frac{a}{x}$

Discuss the convergence (or nonconvergence) behavior of the iteration $x_{n+1}=\phi\left(x_{n}\right), n=0,1,2, \ldots$, for each of these three iteration functions. In case of convergence, determine the order of convergence.
2. (a) Derive an approximation formula for the second derivative,

$$
f^{\prime \prime}(x)=A f(x)+B f(x+h)+C f(x+2 h) \equiv S(x, h)
$$

which is as accurate as possible.
(b) Derive an expression for the error of this approximation.
(c) Use Richardson's extrapolation with $S(x, h)$ and $S(x, h / 2)$ to obtain a better approximation. What can you say about the error?
3. Find the coefficients a_{i} and nodes x_{1} and x_{2} so that the quadrature formula

$$
\int_{-1}^{1} f(x) d x \approx a_{0} f(-1)+a_{1} f\left(x_{1}\right)+a_{2} f\left(x_{2}\right)+a_{3} f(1)
$$

has the highest possible degree of precision. What is the degree of precision?
4. Find a cubic spline that interpolates the data

$$
f(0)=0, \quad f(1 / 3)=1 / 2, \quad f(1)=1,
$$

and satisfies the natural boundary conditions.
5. Consider the linear system

$$
\left(\begin{array}{lll}
5 & 2 & 2 \\
2 & 5 & 2 \\
2 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

(a) Write down the Gauss-Siedel method for solving the system.
(b) Give the iteration matrix of this iteration and compute its spectral radius.
6. Derive a multi-step method

$$
y_{n+1}=y_{n}+h\left(A f_{n}+B f_{n-1}+C f_{n-2}\right)
$$

for the ODE $y^{\prime}=f(t, y)$ which is third-order accurate, and compute the truncation error.
7. (a) Calculate the condition number of $A, \operatorname{cond}(A)=\|A\|_{p}\left\|A^{-1}\right\|_{p}$, where

$$
A=\left(\begin{array}{cc}
100 & 99 \\
99 & 98
\end{array}\right)
$$

for each of $p=1$ and $p=\infty$.
(b) Compare these values with

$$
\frac{\max \left|\lambda_{i}\right|}{\min \left|\lambda_{i}\right|}
$$

where λ_{i} is an eigenvalue of A.

