DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS BASIC EXAM - NUMERICS August, 2004

Do five of the following problems. All problems carry equal weight. Passing level: Masters: 60% with at least two substantially correct.

Ph.D.: 75% with at least three substantially correct.

- 1. The equation $x^2 a = 0$ (for the square root $\alpha = \sqrt{a}$) can be written equivalently in the form $x = \phi(x)$ in many different ways, for example,
 - (a) $\phi(x) = \frac{1}{2}(x + \frac{a}{x})$
 - (b) $\phi(x) = \frac{a}{x}$
 - (c) $\phi(x) = 2x \frac{a}{x}$

Discuss the convergence (or nonconvergence) behavior of the iteration $x_{n+1} = \phi(x_n), n = 0, 1, 2, ...$, for each of these three iteration functions. In case of convergence, determine the order of convergence.

2. (a) Derive an approximation formula for the second derivative,

$$f''(x) = A f(x) + B f(x+h) + C f(x+2h) \equiv S(x,h)$$

which is as accurate as possible.

- (b) Derive an expression for the error of this approximation.
- (c) Use Richardson's extrapolation with S(x, h) and S(x, h/2) to obtain a better approximation. What can you say about the error?

3. Find the coefficients a_i and nodes x_1 and x_2 so that the quadrature formula

$$\int_{-1}^{1} f(x) \, dx \approx a_0 \, f(-1) + a_1 \, f(x_1) + a_2 \, f(x_2) + a_3 \, f(1)$$

has the highest possible degree of precision. What is the degree of precision?

4. Find a cubic spline that interpolates the data

$$f(0) = 0, \quad f(1/3) = 1/2, \quad f(1) = 1,$$

and satisfies the natural boundary conditions.

5. Consider the linear system

$$\begin{pmatrix} 5 & 2 & 2 \\ 2 & 5 & 2 \\ 2 & 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}.$$

- (a) Write down the Gauss-Siedel method for solving the system.
- (b) Give the iteration matrix of this iteration and compute its spectral radius.
- 6. Derive a multi-step method

$$y_{n+1} = y_n + h (A f_n + B f_{n-1} + C f_{n-2})$$

for the ODE y' = f(t, y) which is third-order accurate, and compute the truncation error.

7. (a) Calculate the condition number of A, $cond(A) = ||A||_p ||A^{-1}||_p$, where

$$A = \left(\begin{array}{cc} 100 & 99\\ 99 & 98 \end{array}\right)$$

for each of p = 1 and $p = \infty$.

(b) Compare these values with

$$\frac{\max|\lambda_i|}{\min|\lambda_i|}$$

where λ_i is an eigenvalue of A.