DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS
 BASIC EXAM - NUMERICS
 AUGUST 29, 2000

Do five of the following problems. All problems carry equal weight. Passing level:
Masters: 60% with at least two substantially correct.
Ph.D: 75% with at least three substantially correct.

1. Derive a numerical differentiation scheme of the following form:

$$
f^{\prime \prime}(t) \approx A f(t+2 h)+B f(t+h)+C f(t)
$$

Also derive a formula for the error in making this approximation.
2. For solving $y^{\prime}=f(x, y)$, consider the numerical method

$$
y_{n+1}=y_{n}+\frac{h}{2}\left(y_{n}^{\prime}+y_{n+1}^{\prime}\right)+\frac{h^{2}}{12}\left(y_{n}^{\prime \prime}-y_{n+1}^{\prime \prime}\right),
$$

where $n=0,1, \ldots$, and $h=x_{n+1}-x_{n}($ the step size $)$.
(a). Show that this method is at least fourth order accurate.
(b). For the equation $y^{\prime}=\lambda y, y(0)=\epsilon \neq 0$, show that the method will not blow up if λ is negative and real as $n \rightarrow \infty$.
3. Consider the numerical integration rule

$$
\int_{-1}^{1} f(x) d x=w_{1} f\left(-x_{1}\right)+w_{0} f(0)+w_{1} f\left(x_{1}\right) .
$$

(a). Write down and solve the conditions for x_{1}, w_{0} and w_{1}.
(b). Use this rule to derive an approximation for the general integral $\int_{a}^{b} f(x) d x$.

4(a). Show that if $\|A\|<1$ in some induced matrix norm, then the iteration

$$
v^{k+1}=A v^{k}+b
$$

converges where A is any n by n matrix; b and v^{k} are n-vectors.
(b). Show that if A is a strictly diagonally dominant matrix, then Jacobi iteration for the linear system

$$
A x=b
$$

converges.
5. Define an iteration formula by

$$
x_{n+1}=z_{n+1}-\frac{f\left(z_{n+1}\right)}{f^{\prime}\left(x_{n}\right)}, \quad z_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

for finding the simple root α of $f(x)$. Show that the order of convergence is at least 2 . To make your final conclusion you may quote a well-known theorem.
6. Let $p_{n}(x)$ be the interpolation polynomial of degree $\leq \mathrm{n}$ interpolating $f(x)=e^{x}$ at the points $x_{i}=\frac{i}{n}, i=0,1,2, \ldots, n$.
(a). Derive a good upper bound for

$$
\max _{0 \leq x \leq 1}\left|e^{x}-p_{n}(x)\right|
$$

using the hint below, and determine the smallest n guaranteeing an error less than 10^{-2} on $[0,1]$. [Hint: First show that for any integer i with $0 \leq i \leq n$, one has

$$
\left.\max _{0 \leq x \leq 1}\left|\left(x-\frac{i}{n}\right)\left(x-\frac{n-i}{n}\right)\right| \leq \frac{1}{4} .\right]
$$

(b). Solve the analogous problem for the n th-degree Taylor polynomial for $f(x)$ and compare the result with the one in (a).
7. We wish to interpolate the function $f(x)$ at the points

$$
x_{j}=j \frac{2 \pi}{2 n+1}, j=0, \ldots, 2 n
$$

for some positive integer n by a polynomial of the form

$$
\sum_{k=-n}^{n} c_{k} e^{i k x}
$$

i.e., we want

$$
\begin{equation*}
\sum_{k=-n}^{n} c_{k} e^{i k x_{j}}=f\left(x_{j}\right), \quad j=0,1, \ldots, 2 n \tag{1}
\end{equation*}
$$

Use the relation

$$
\sum_{j=0}^{2 n} e^{i k x_{j}}= \begin{cases}2 n+1 & \text { if } k \text { is an integer multiple of } 2 \mathrm{n}+1 \\ 0 & \text { if } k \text { is any other integer }\end{cases}
$$

for $k=0,1, \ldots, 2 n$ to derive expressions for c_{k}. Hint: Multiply equation (1) by $e^{-i \ell x_{j}}$ and sum appropriately where ℓ is an integer which satisfies $-n \leq \ell \leq n$. Here $i=\sqrt{-1}$.

