UNIVERSITY OF MASSACHUSETTS

Department of Mathematics and Statistics Basic Exam - Statistics Tuesday, January 17, 2012

Work all problems. 60 points are needed to pass at the Masters Level and 75 to pass at the Ph.D. level.

1. Let X_1, X_2, \ldots, X_n be a random sample from a distribution with the following density:

$$f(x \mid \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x}, \text{ for } x = 0, 1, \dots, n;$$

where $0 \le \theta \le 1$ and n is any positive integer.

- (a) Derive the MLE, $\hat{\theta}$, of θ . It is required to justify that your answer is indeed an MLE.
- (b) Is $\hat{\theta}$ an unbiased estimator? Justify your answer.
- (c) What is the variance of the estimator that you found in part a)?
- (d) Assuming $0 < \theta < 1$, what is the approximate distribution of the estimator that you found in a) as n gets large?
- (e) Use your result from part d) to find an approximate 95% confidence interval for θ .
- (f) Develop the likehood ratio test for testing

$$H_0: \theta = \theta_0 \text{ against } H_1: \theta = \theta_1$$

where $0 < \theta_0 < \theta_1 < 1$. You must reduce the test in term of a statistic with known distribution, then describe the size α rejection region using this known distribution.

2. Let Y_1, \ldots, Y_n be a random sample from Bernoulli(θ), and define $X = \sum_{i=1}^n Y_i$. Thus, $X \mid \theta \sim \text{Binomial}(\theta)$, and the sampling density for X is

$$f(x \mid \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x}, \text{ for } x = 0, 1, \dots, n$$

where $0 \le \theta \le 1$ and n is any positive integer.

Let the prior distribution for the parameter θ be the Beta distribution with the following probability density function. (i.e. $\theta \sim Beta(\alpha, \beta)$):

$$f(\theta \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

where $0 \le \theta \le 1$, $\alpha > 0$ and $\beta > 0$.

Note that for $\theta \sim Beta(\alpha, \beta)$, $E(\theta) = \frac{\alpha}{\alpha + \beta}$ and $Var(\theta) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.

- (a) Find the posterior distribution of θ .
- (b) Find the posterior mean of θ .
- (c) Describe how to construct a 90% equal-tail posterior interval for θ .
- 3. Let Y_1, \ldots, Y_n be independent random variables with the following probability mass function

$$P(Y_i = y \mid \beta) = \frac{(\beta x_i)^y e^{-\beta x_i}}{y!}, \quad y = 0, 1, \dots$$

where $x_1 < x_2 < \ldots < x_n$ are fixed, positive constant, and β is an unknown positive constant.

- (a) Find the maximum likelihood estimator (MLE) of β , $\hat{\beta}_{MLE}$.
- (b) Find the least squares estimator (LSE) for β , $\hat{\beta}_{LSE}$, that minimizes the sum of squares of difference between Y_i and βx_i .
- (c) Find the means and variances of $\hat{\beta}_{MLE}$ and $\hat{\beta}_{LSE}$.
- (d) Find the Rao-Cramer lower bound for an unbiased estimator of β .
- (e) Which estimator between $\hat{\beta}_{MLE}$ and $\hat{\beta}_{LSE}$ is preferred? Justify your choice.
- 4. Let X_1, \ldots, X_n be a random sample from the gamma distribution

$$f(x;\theta) = \theta e^{-\theta x}$$

where $x \geq 0$ and $\theta > 0$.

- (a) Find the maximum likelihood estimator (MLE) for θ , $\hat{\theta}_{MLE}$.
- (b) Find the asymptotic distribution of $\hat{\theta}_{MLE}$.
- (c) Describe how one can construct a 95% confidence interval for θ using the likelihood ratio statistic.

Consider the prior distribution for the parameter θ as an exponential distribution,

$$\pi(\theta;\tau) = \tau e^{-\tau\theta},$$

where $\theta > 0$ and $\tau > 0$.

- (e) Find the Bayes estimator of θ and show that it is a weighted average of the prior mean for θ and $\hat{\theta}_{MLE}$
- (f) Describe how one can construct a 95% Bayes credible interval for θ .

2