DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS BASIC EXAM - STATISTICS August 30, 2002

Work all problems. Sixty points are needed to pass at the Master's level and seventy-five at the Ph.D. level.

- 1. (20 pts) Give a precise definition for the following:
 - (a) A complete family of density functions.
 - (b) A Uniformly Most Powerful (UMP) test.
 - (c) A regular exponential class of density functions.
 - (d) State the Lehmann-Scheffe Theorem.
- 2. (25 pts) Consider a simple random sample of size n from a Poisson distribution with mean μ . Let $\theta = P(X = 0)$.
 - (a) Find the MLE of θ and show that it is a consistent estimator.
 - (b) Let $T = \sum X_i$. Show that $\tilde{\theta} = [(n-1)/n]^T$ is an unbiased estimator of θ .
 - (c) Find the UMVU estimator of θ .
 - (d) Does the UMVU in (c) attain the CRLB for the variances of unbiased estimators of θ ? Show work.
- 3. (15 pts) The p.d.f. of an exponential distribution with mean θ is

 $f(x) = \theta^{-1} \exp(-x/\theta)$ for x > 0, and 0 elsewhere.

Let X_1, \ldots, X_n be a random sample from this p.d.f.

- (a) Derive the MLE of θ . It is required to justify that your answer is indeed an MLE.
- (b) Give the MLE of θ^2 , with justification (note that $\theta^2 = Var(X_i)$).
- (c) For a large n, find an approximate 95% confidence interval for θ and for θ^2 , respectively.

- 4. (20 pts) Suppose that X_1, \ldots, X_n is a random sample from a N(μ, σ^2) distribution, with μ and σ^2 unknown.
 - (a) Write down, without proof, the MLEs of μ and σ^2 , respectively.
 - (b) Write down, without proof, the MLE of σ^2 given $\mu = \mu_0$.
 - (c) Using the given sample, derive an α -level likelihood ratio test for H_0 : $\mu = \mu_0$ against the alternative H_1 : $\mu \neq \mu_0$, where μ_0 is a given number.
 - (d) For a large n and $\alpha = 0.05$, find the asymptotic power of the test if $\mu = \mu_0 + 1$. You may use $\Phi(\cdot)$ to denote the c.d.f. of the N(0, 1) distribution.
- 5. (20 pts) Let X_1, \ldots, X_n be a random sample form an exponential distribution with density $f(x; \theta) = \theta e^{-\theta x}$, x > 0 (having mean $1/\theta$). Assume a prior density for θ which is also exponential with mean $1/\beta$, where β is known.
 - (a) Prove that the posterior distribution of β is a Gamma distribution. If you can't do part (a), assume the posterior distribution is Gamma with parameters a and b and do the remaining parts.
 - (b) Using squared error loss find the Bayes estimator of θ .
 - (c) Using absolute error loss, find the Bayes estimator of θ (this won't have an explicit analytical expression but your answer can be expressed using a percentile of the gamma distribution.)
 - (d) Derive a 95% Bayesian confidence interval for θ .
 - (e) Derive a 95% Bayesian confidence interval for $\mu = 1/\theta$.