## UNIVERSITY OF MASSACHUSETTS

## Department of Mathematics and Statistics ADVANCED EXAM - Probability and Multivariate Distribution Theory Friday, Jan. 14, 2011

Each problem is worth 20 point. 70 points are required to pass with at least 25 coming from question 1 and 2 and 25 coming from question 4 and 5.

- 1. ( $L^2$  weak law of large numbers) Let  $X_1, X_2, \cdots, X_n$  be uncorrelated random variables on the probability space  $(\Omega, \mathcal{F}, P)$ . Assume  $\mu = E(X_i)$  and the variance of X is such that  $\text{var}(X_i) \leq C < \infty$ , for  $i = 1, \cdots, n$ . With  $S_n = X_1 + \cdots + X_n$ , prove that as  $n \to \infty$ ,  $S_n/n \to \mu$  in  $L^2$  and in probability.
- 2. . (Central Limit Theorem) Let  $X_1, \cdots, X_n$  be i.i.d. random variables on the probability space  $(\Omega, \mathcal{F}, P)$ . Assume  $E(X_i) = \mu$ ,  $\text{var}(X_i) = \sigma^2 \in (0, \infty)$ , for any  $i = 1, \cdots, n$ . With  $S_n = X_1 + \cdots + X_n$ , prove that

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \Rightarrow N(0,1)$$

where N(0,1) is the standard normal distribution, and  $\Rightarrow$  means to converge weakly or converge in distribution.

- 3. (a) Define the characteristic function and moment generating function (Laplace transform) of a random variable *X*. Do they always exist?
  - (b) *Prove* that if M(t) denotes the moment generating function of X then, under some conditions (specify what they are) for a positive integer k,  $E(X^k) = \frac{d^k}{dt^k}M(t)$  evaluated at t=0.

A normal random variable with mean  $\mu$  and variance  $\sigma^2$  has moment generating function  $M(t)=e^{t\mu+t^2\sigma^2/2}$ . You can just use this below. No need to prove it.

- (c) Consider random variables  $X_1, \ldots, X_n$  that are independent with  $X_i$  distributed normal with mean  $\mu_i$  and variance  $\sigma_i^2$ . Derive the moment function of  $S = \sum_{i=1}^N X_i$  (explain your steps) and hence show that S is normally distributed. As part of the result give what the mean and variance of S are.
- 4. Consider two random vectors  $\mathbf{X}$  ( $p \times 1$ ) and  $\mathbf{Y}$  ( $r \times 1$ ) and two matrices  $\mathbf{A}$  ( $a \times p$ ) and  $\mathbf{B}$  ( $b \times r$ ).
  - (a) First define the covariance matrix for an individual random vector (e.g,  $\Sigma_X = Cov(\mathbf{X})$ ) and the covariance between two random vectors (e.g.,  $\Sigma_{XY} = Cov(\mathbf{X}, \mathbf{Y})$ ) in terms of expected values.

- (b) Show that if X and Y are independent then Cov(X, Y) = 0. Is the converse true? If yes, why? If no, give a counter example.
- (c) Derive an expression for  $Cov(\mathbf{AX})$  in terms of  $\mathbf{A}$  and  $\Sigma_X$ .
- (d) Derive an expression for  $Cov(\mathbf{AX}, \mathbf{BY})$  with your answer given in terms of  $\Sigma_X = Cov(\mathbf{X})$ ,  $\Sigma_Y = Cov(\mathbf{Y})$  and  $\Sigma_{XY} = Cov(\mathbf{X}, \mathbf{Y})$ .
- (e) Now suppose that A is a square  $p \times p$  matrix and consider the quadratic form  $Q = \mathbf{X}' \mathbf{A} \mathbf{X}$  (where ' denotes transpose). Derive an expression E(Q) with your answer given in terms of  $\mathbf{A}$ ,  $\boldsymbol{\mu} = E(\mathbf{X})$  and  $\boldsymbol{\Sigma}_X$  and the trace operator. In doing this first define what the trace of a matrix is.

## 5. (Chi-square distribution)

- (a) State the definition of a non-central chi-square distribution with d degrees of freedom and non-centrality parameter  $\lambda$ . Do this not by giving a density function but by explaining how the distribution arises as the distribution of a random variable C, formed as a function of a suitably defined normal random vector.
- (b) Suppose now that X is distributed normal with mean  $\mu$  and covariance  $\Sigma$ . State a necessary and sufficient condition on the matrix A such that X'AX is distributed as a non-central chi-square.
  - Give the degrees of freedom and non-centrality parameter involved.
  - Prove the sufficiency.