UNIVERSITY OF MASSACHUSETTS

Department of Mathematics and Statistics
ADVANCED EXAM - "Mathematical Statistics" and Probability
January 20, 2009
Work all problems. 70 points are required to pass with at least 25 from each part (the Probability part consists of problems 4-6 and part f) of problem 1.) Good luck.

Part I: Multivariate/Linear Models

1. (33 PTS)

Let $X_{1}, \ldots, X_{n} \sim$ i.i.d. $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Define $\bar{X} \equiv n^{-1} \sum_{i=1}^{n} X_{i}$ and $S^{2} \equiv \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} /(n-1)$.
(a) Write a formula for the joint density of $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$
(b) Define the random vector $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ by

$$
\begin{aligned}
& Y_{1}=X_{1}-\bar{X} \\
& Y_{2}=X_{2}-\bar{X} \\
& \vdots \\
& Y_{n-1}=X_{n-1}-\bar{X} \\
& Y_{n}=\bar{X}
\end{aligned}
$$

Derive the joint density of $\left(Y_{1}, \ldots, Y_{n}\right)$. (You can do this either through a multivariate transformation/change of variables or using moment generating functions, but either way justify your answer.)
(c) Show that S^{2} is a function only of $\left(Y_{1}, \ldots, Y_{n-1}\right)$; i.e. not a function of Y_{n}.
(d) Say why parts b) and c) show that \bar{X} and S^{2} are independent. (Note: Do this WITHOUT appealing to a general result about independence of linear and quadratic forms.)
(e) Express S^{2} as a quadratic form in the random vector \mathbf{X}. Then state a general result on the expected value of a quadratic form and then use it to derive $E\left(S^{2}\right)$. Explain the steps and comment on whether your result still holds if the normality assumption is dropped.
(f) Now drop the normality assumption and assume $E\left(X_{i}^{3}\right)=\theta_{3}$ and $E\left(X_{i}^{4}\right)=\theta_{4}$.

State the general multivariate central limit theorem. Then use it as a starting point to derive the joint asymptotic distribution of \bar{X} and S^{2}. (Hint: work with $\sum_{i} X_{i} / n$ and $\sum_{i} X_{i}^{2} / n$ to start).
2. (15 PTS) An $n \times n$ square matrix \mathbf{A} is defined to be positive semidefinite (p.s.d.) if i) $\mathbf{A}=\mathbf{A}^{\prime}$ (where ' denotes transpose) and ii) for any $\mathbf{y}(n \times 1), \mathbf{y}^{\prime} \mathbf{A} \mathbf{y} \geq 0$ and for at least one $\mathbf{y} \neq \mathbf{0}, \mathbf{y}^{\prime} \mathbf{A y}=0$. It is defined to be positive definite (p.d.) if $\mathbf{A}=\mathbf{A}^{\prime}$ and for all $\mathbf{y} \neq \mathbf{0}, \mathbf{y}^{\prime} \mathbf{A y}>0$. It is defined to be non-negative if it is either p.s.d. or p.d.
(a) Explain why the covariance matrix, say $\boldsymbol{\Sigma}$, of a random vector \mathbf{X} (with each component having non-zero variance) must be non-negative.
(b) If Σ is p.s.d. rather than p.d., what, if anything, does that say about the components of \mathbf{X} ? Be as specific as you can in your answer.
(c) Suppose that \mathbf{A} is p.d. State and prove a result about the characteristic roots of A (you can state and use without proof the "spectral decomposition theorem"; you may know it by another name but it relates \mathbf{A} to an orthogonal matrix and the characteristic roots of \mathbf{A}). Then use this result to argue that \mathbf{A} can be written as $\Gamma \Gamma^{\prime}$, where $\boldsymbol{\Gamma}$ is an $n \times n$ non-singular matrix.
(d) Suppose \mathbf{X} is multivariate normal with mean vector $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$ where $\boldsymbol{\Sigma}$ is non-singular. Find a new random vector \mathbf{Z}, which is a function of \mathbf{X}, such that \mathbf{Z} is normal with mean $\mathbf{0}$ and covariance \mathbf{I} (the identity matrix). You can use the result from the previous part.
3. (12 PTS) Consider

$$
\left[\begin{array}{c}
Y \\
\mathbf{X}
\end{array}\right] \sim N\left(\left[\begin{array}{c}
\mu_{Y} \\
\boldsymbol{\mu}_{X}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{Y}^{2} & \boldsymbol{\sigma}_{Y X} \\
\boldsymbol{\sigma}_{Y X}^{\prime} & \boldsymbol{\Sigma}_{X X}
\end{array}\right]\right)
$$

The covariance matrix is assumed non-singular.
Define $W=\mu_{y}+\sigma_{Y X}\left(\mathbf{X}-\boldsymbol{\mu}_{X}\right)$.
(a) Find $\operatorname{Cov}(Y, W)$ and then use this to find the correlation between Y and W (this is called the multiple correlation between Y and the vector \mathbf{X}).
(b) Derive the conditional distribution of Y given $\mathbf{X}=\mathbf{x}$. If you can't do the derivation at least state the result.

Hint: If

$$
B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

is a non-singular matrix, with each of B_{11} and B_{22} also non-singular, then

$$
B^{-1}=\left[\begin{array}{ll}
{\left[B_{11}-B_{12} B_{22}^{-1} B_{21}\right]^{-1}} & -B_{11}^{-1} B_{12}\left[B_{22}-B_{21} B_{11}^{-1} B_{12}\right]^{-1} \\
-B_{22}^{-1} B_{21}\left[B_{11}-B_{12} B_{22}^{-1} B_{21}\right]^{-1} & {\left[B_{22}-B_{21} B_{11}^{-1} B_{12}\right]^{-1}}
\end{array}\right] .
$$

4. (15 PTS) Let $\left\{X_{n}, n \in \mathcal{N}\right\}$ and $\left\{Y_{n}, n \in \mathcal{N}\right\}$ be sequences of random variables, and let X and Y be random variables on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$.
(a) Define what it means for $X_{n} \rightarrow X$ in probability,
(b) Assume that $X_{n} \rightarrow X$ in probability and $Y_{n} \rightarrow Y$ in probability.
i. Prove that for any real numbers α and $\beta, \alpha X_{n}+\beta Y_{n} \rightarrow \alpha X+\beta Y$ in probability.
ii. Prove that $\left|X_{n}\right| \rightarrow|X|$ in probability.
iii. Assume that there exists $M<\infty$ such that for all $n \in \mathcal{N}$ and all $\omega \in \Omega$, $\left|X_{n}(\omega)\right| \leq M,|X(\omega)| \leq M,\left|Y_{n}(\omega)\right| \leq M,|Y(\omega)| \leq M$. Prove that $X_{n} Y_{n} \rightarrow X Y$ in probability.
5. (15 PTS) Let X be a random variable on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$. Assume that for all $t \in \mathcal{R}, \varphi(t)=E\{\exp (t X)\}$ is finite. This problem explains why φ is called the moment generating function of X.
(a) Prove that for all $t \in \mathcal{R}, \varphi^{\prime}(t)$ exists and that $E\{X\}$ exists and is given by

$$
E\{X\}=\varphi^{\prime}(0)
$$

One method of proof uses the following inequality, which you do not have to prove: for any real numbers h and x

$$
\left|\frac{e^{h x}-1}{h}\right| \leq e^{(1+|h|)|x|}<e^{(1+|h|) x}+e^{-(1+|h|) x} .
$$

(b) By using induction on n, prove that for all $n \in \mathcal{N}$ and $t \in \mathcal{R}, \varphi^{(n)}(t)$ exists and that $E\left\{X^{n}\right\}$ exists and is given by

$$
E\left\{X^{n}\right\}=\varphi^{(n)}(0)
$$

6. (10 PTS) Fix $\lambda>0$. For each $n \in \mathcal{N}$ let $X_{n, 1}, X_{n, 2}, \ldots, X_{n, n}$ be independent random variables such that for each $k=1,2, \ldots, n$

$$
P\left\{X_{n, k}=1\right\}=\frac{\lambda}{n}, P\left\{X_{n, k}=0\right\}=1-\frac{\lambda}{n} .
$$

Using the method of characteristic functions, prove that $\sum_{k=1}^{n} X_{n, k}$ converges in distribution to a certain well known random variable Y defined in terms of λ. In your answer identify Y.

