UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics ADVANCED EXAM - "Mathematical Statistics" and Probability January 20, 2009

Work all problems. 70 points are required to pass with at least 25 from each part (the Probability part consists of problems 4-6 and part f) of problem 1.) Good luck.

Part I: Multivariate/Linear Models

1. (33 PTS)

Let $X_1, \ldots, X_n \sim \text{i.i.d. } N(\mu, \sigma^2)$. Define $\overline{X} \equiv n^{-1} \sum_{i=1}^n X_i$ and $S^2 \equiv \sum_{i=1}^n (X_i - \overline{X})^2 / (n-1)$.

- (a) Write a formula for the joint density of $\mathbf{X} = (X_1, \dots, X_n)'$
- (b) Define the random vector $\mathbf{Y} = (Y_1, \dots, Y_n)'$ by

$$Y_1 = X_1 - \bar{X}$$

$$Y_2 = X_2 - \bar{X}$$

$$\vdots$$

$$Y_{n-1} = X_{n-1} - \bar{X}$$

$$Y_n = \bar{X}$$

Derive the joint density of (Y_1, \ldots, Y_n) . (You can do this either through a multivariate transformation/change of variables or using moment generating functions, but either way justify your answer.)

- (c) Show that S^2 is a function only of (Y_1, \ldots, Y_{n-1}) ; i.e. not a function of Y_n .
- (d) Say why parts b) and c) show that \bar{X} and S^2 are independent. (Note: Do this WITHOUT appealing to a general result about independence of linear and quadratic forms.)
- (e) Express S^2 as a quadratic form in the random vector **X**. Then state a general result on the expected value of a quadratic form and then use it to derive $E(S^2)$. Explain the steps and comment on whether your result still holds if the normality assumption is dropped.

- (f) Now drop the normality assumption and assume $E(X_i^3) = \theta_3$ and $E(X_i^4) = \theta_4$. State the general multivariate central limit theorem. Then use it as a starting point to derive the joint asymptotic distribution of \bar{X} and S^2 . (Hint: work with $\sum_i X_i/n$ and $\sum_i X_i^2/n$ to start).
- 2. (15 PTS) An $n \times n$ square matrix **A** is defined to be positive semidefinite (p.s.d.) if i) $\mathbf{A} = \mathbf{A}'$ (where ' denotes transpose) and ii) for any \mathbf{y} ($n \times 1$), $\mathbf{y}' \mathbf{A} \mathbf{y} \ge 0$ and for at least one $\mathbf{y} \neq \mathbf{0}$, $\mathbf{y}' \mathbf{A} \mathbf{y} = 0$. It is defined to be positive definite (p.d.) if $\mathbf{A} = \mathbf{A}'$ and for all $\mathbf{y} \neq \mathbf{0}$, $\mathbf{y}' \mathbf{A} \mathbf{y} > 0$. It is defined to be non-negative if it is either p.s.d. or p.d.
 - (a) Explain why the covariance matrix, say Σ , of a random vector **X** (with each component having non-zero variance) must be non-negative.
 - (b) If Σ is p.s.d. rather than p.d., what, if anything, does that say about the components of **X**? Be as specific as you can in your answer.
 - (c) Suppose that **A** is p.d. State and prove a result about the characteristic roots of **A** (you can state and use without proof the "spectral decomposition theorem"; you may know it by another name but it relates **A** to an orthogonal matrix and the characteristic roots of **A**). Then use this result to argue that **A** can be written as $\Gamma\Gamma'$, where Γ is an $n \times n$ non-singular matrix.
 - (d) Suppose **X** is multivariate normal with mean vector $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$ where $\boldsymbol{\Sigma}$ is non-singular. Find a new random vector **Z**, which is a function of **X**, such that **Z** is normal with mean **0** and covariance **I** (the identity matrix). You can use the result from the previous part.
- 3. (12 PTS) Consider

$$\begin{bmatrix} Y \\ \mathbf{X} \end{bmatrix} \sim N(\begin{bmatrix} \mu_Y \\ \boldsymbol{\mu}_X \end{bmatrix}, \begin{bmatrix} \sigma_Y^2 & \boldsymbol{\sigma}_{YX} \\ \boldsymbol{\sigma}_{YX}' & \boldsymbol{\Sigma}_{XX} \end{bmatrix}).$$

The covariance matrix is assumed non-singular.

Define $W = \mu_y + \sigma_{YX} (\mathbf{X} - \boldsymbol{\mu}_X).$

- (a) Find Cov(Y, W) and then use this to find the correlation between Y and W (this is called the multiple correlation between Y and the vector **X**).
- (b) Derive the conditional distribution of Y given $\mathbf{X} = \mathbf{x}$. If you can't do the derivation at least state the result.

Hint: If

$$B = \left[\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array} \right]$$

is a non-singular matrix, with each of B_{11} and B_{22} also non-singular, then

$$B^{-1} = \begin{bmatrix} \begin{bmatrix} B_{11} - B_{12}B_{22}^{-1}B_{21} \end{bmatrix}^{-1} & -B_{11}^{-1}B_{12}\begin{bmatrix} B_{22} - B_{21}B_{11}^{-1}B_{12} \end{bmatrix}^{-1} \\ -B_{22}^{-1}B_{21}\begin{bmatrix} B_{11} - B_{12}B_{22}^{-1}B_{21} \end{bmatrix}^{-1} & \begin{bmatrix} B_{22} - B_{21}B_{11}^{-1}B_{12} \end{bmatrix}^{-1} \end{bmatrix}.$$

Part II: Advanced Probability

- 4. (15 PTS) Let $\{X_n, n \in \mathcal{N}\}$ and $\{Y_n, n \in \mathcal{N}\}$ be sequences of random variables, and let X and Y be random variables on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$.
 - (a) Define what it means for $X_n \to X$ in probability,
 - (b) Assume that $X_n \to X$ in probability and $Y_n \to Y$ in probability.
 - i. Prove that for any real numbers α and β , $\alpha X_n + \beta Y_n \rightarrow \alpha X + \beta Y$ in probability.
 - ii. Prove that $|X_n| \to |X|$ in probability.
 - iii. Assume that there exists $M < \infty$ such that for all $n \in \mathcal{N}$ and all $\omega \in \Omega$, $|X_n(\omega)| \leq M, |X(\omega)| \leq M, |Y_n(\omega)| \leq M, |Y(\omega)| \leq M$. Prove that $X_n Y_n \to XY$ in probability.
- 5. (15 PTS) Let X be a random variable on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$. Assume that for all $t \in \mathcal{R}$, $\varphi(t) = E\{\exp(tX)\}$ is finite. This problem explains why φ is called the moment generating function of X.

(a) Prove that for all $t \in \mathcal{R}$, $\varphi'(t)$ exists and that $E\{X\}$ exists and is given by

$$E\{X\} = \varphi'(0).$$

One method of proof uses the following inequality, which you do not have to prove: for any real numbers h and x

$$\left|\frac{e^{hx} - 1}{h}\right| \le e^{(1+|h|)|x|} < e^{(1+|h|)x} + e^{-(1+|h|)x}$$

(b) By using induction on n, prove that for all $n \in \mathcal{N}$ and $t \in \mathcal{R}$, $\varphi^{(n)}(t)$ exists and that $E\{X^n\}$ exists and is given by

$$E\{X^n\} = \varphi^{(n)}(0)$$

6. (10 PTS) Fix $\lambda > 0$. For each $n \in \mathcal{N}$ let $X_{n,1}, X_{n,2}, \ldots, X_{n,n}$ be independent random variables such that for each $k = 1, 2, \ldots, n$

$$P\{X_{n,k} = 1\} = \frac{\lambda}{n}, \ P\{X_{n,k} = 0\} = 1 - \frac{\lambda}{n}.$$

Using the method of characteristic functions, prove that $\sum_{k=1}^{n} X_{n,k}$ converges in distribution to a certain well known random variable Y defined in terms of λ . In your answer identify Y.