UNIVERSITY OF MASSACHUSETTS
Department of Mathematics and Statistics
ADVANCED EXAM - Mathematical Statistics and Probability
January 24, 2008
70 points are required to pass. Of these a minimum of 25 point is needed from each section; Probability (problems 1-3) and Statistics (problems 4 and 5). Problem 1 is worth 15 points, problems 2-4 are each worth 20 points and problem 5 is worth 25 points.

1. Let (Ω, \mathcal{F}, P) be a probability space and X a random variable mapping X into \mathbf{R}.
(a) Prove that

$$
\sum_{n=1}^{\infty} P(|X| \geq n) \leq E(|X|) \leq 1+\sum_{n=1}^{\infty} P(|X| \geq n)
$$

(b) Let $c>0$ be a fixed positive number. Prove that

$$
E(|X|)<\infty \text { if and only if } \sum_{n=1}^{\infty} P(|X| \geq c n)<\infty
$$

Conclude that if $\sum_{n=1}^{\infty} P(|X| \geq c n)<\infty$ for one value of $c>0$, then this series converges for all values of $c>0$.
2. Let (Ω, \mathcal{F}, P) be a probability space, X an integrable random mapping X into \mathbf{R}, and \mathcal{G} a σ-algebra of subsets of Ω satisfying $\mathcal{G} \subset \mathcal{F}$ (i.e., \mathcal{G} is a σ-subalgebra of \mathcal{F}).
(a) State the properties that characterize $E(X \mid \mathcal{G})$, the conditional expectation of X with respect to \mathcal{G}.
(b) Using a well known theorem in measure theory, prove that $E(X \mid \mathcal{G})$ exists.
(c) Let Y be another integrable random variable mapping X into \mathbf{R}. Prove that if $X \leq Y$ a.s., then $E(X \mid \mathcal{G}) \leq E(Y \mid \mathcal{G})$ a.s.
(d) Let $\mathcal{A}=\left\{A_{j}, j \in \mathbf{N}\right\}$ be a countable collection of disjoint subsets of \mathcal{F} satisfying $P\left(A_{j}\right)>0$ for all $j \in \mathbf{N}$. Define \mathcal{G} to be the σ-subalgebra of \mathcal{F} generated by \mathcal{A}.
(i) Describe the form of the sets in \mathcal{G}.
(ii) Give a formula for $E(X \mid \mathcal{G})$ involving the sets A_{1}.
3. Let (Ω, \mathcal{F}, P) be a probability space and $\left\{X_{i}, i \in \mathbf{N}\right\}$ a sequence of independent, identically distributed random variables mapping Ω into \mathbf{R} and satisfying $E\left(X_{i}\right)=0$ and $M=$ $E\left(\left|X_{i}\right|^{4}\right)<\infty$ for all $i \in \mathbf{N}$. Define $S_{n}=\sum_{i=1}^{n} X_{i}$.
(a) Prove that $\sigma^{2}=E\left(\left|X_{i}\right|^{2}\right)<\infty$ for all $i \in \mathbf{N}$. Then use this fact to prove the weak law of large numbers for S_{n} / n. Prove the weak law of large numbers directly; do not deduce it from part (c) of this problem.
(b) Prove that for any $\delta>0$ there exists $C<\infty$ such that for all $n \in \mathbf{N}$

$$
P\left(\left|S_{n} / n\right| \geq \delta\right) \leq C / n^{2}
$$

(c) Prove the strong law of large numbers for S_{n} / n. (Hint. Using part (b), derive a suitable upper bound for $P\left(A^{c}\right)$, where $\left.A=\left\{S_{n} / n \rightarrow 0\right\}\right)$.
4. Let X_{1}, \ldots, X_{n} be i.i.d. from a gamma distribution with parameters α and γ, both positive; i.e.,

$$
f\left(x_{i}\right)=\frac{x_{i}^{\alpha-1} e^{-x_{i} / \gamma}}{\Gamma(\alpha) \gamma^{\alpha}} I_{(0, \infty)}\left(x_{i}\right)
$$

(a) Write out the log-likelihood function and get the likelihood/score equations for obtaining the maximum likelihood estimates of α and γ. You can just leave the derivative of $\Gamma(\alpha)$ denoted as $\Gamma^{\prime}(\alpha)$ in your solution.
(b) Find the Fisher Information matrix.
(c) The likelihood equations do not have a closed form solution. Describe how you would proceed using either Fisher's scoring method or Newton-Raphson to proceed iteratively to obtain a solution to the likelihood equation (assuming for now that it exists).
(d) Assuming that $g(\alpha)=\log (\alpha)-\left(\Gamma^{\prime}(\alpha) / \Gamma(\alpha)\right)$ is monotonic in α, argue that a solution to the likelihood equations exists almost surely.
5. Let $X_{1}, \ldots X_{n}$ be i.i.d. $N\left(\mu, \sigma^{2}\right)$.
(a) Find a set of two complete sufficient statistics. Note: You can apply a result for exponential families, but state it carefully and justify any conditions that need to hold to use the result.
(b) Find the UMVUE for each of μ, σ^{2} and σ. State (without proof) what general result you are applying to construct UMVUE's but be sure to prove the unbiasedness of your answers. HINT: Recall that a chi-square with d degrees of freedom, is equivalent to a gamma distribution from the previous problem with $\alpha=d / 2$ and $\gamma=2$.
(c) Consider testing $H_{0}: \mu \geq \mu_{0}$ versus $H_{A}: \mu<0$. and define $T=\left(\bar{X}-\mu_{0}\right) /\left(S / n^{1 / 2}\right)$ where $\bar{X}=\sum_{i} X_{i} / n$ and $S^{2}=\sum_{i}\left(X_{i}-\bar{X}\right)^{2} /(n-1)$.
Note: In answering this question you can use without proof what you know about distribution of the sample mean \bar{X} and sample variance S^{2} and the fact that they are independent.
i. First argue that when $\mu=\mu_{0}, T$ is distributed t with $n-1$ degrees of freedom.
ii. Show that the test which rejects H_{0} if $T<-t_{n-1, \alpha}$ is a likelihood ratio test, where $t_{n-1, \alpha}$ is the 100α the percentile of the t with $n-1$ degrees of freedom.
iii. Define the size of a test and argue that this test has size α. Note that you need to define the power function in doing this and address the monotonicity of the power function. Hint: Think conditioning.
(d) Now, drop the normality assumption.

- First prove that S^{2} is unbiased for σ^{2}. Assume the second moment of X_{i} is finite.
- Now, assuming that $E\left(X_{i}^{4}\right)<\infty$, prove that S^{2} converges in probability to (i.e., is consistent for) σ^{2}. (Aside: This is a key piece in arguing that the limiting distribution of T as n increases is a standard normal, which provides a robust large sample test for the problem in part c)).

