UNIVERSITY OF MASSACHUSETTS

Department of Mathematics and Statistics ADVANCED EXAM - Mathematical Statistics and Probability January 24, 2008

70 points are required to pass. Of these a minimum of 25 point is needed from each section; Probability (problems 1-3) and Statistics (problems 4 and 5). Problem 1 is worth 15 points, problems 2-4 are each worth 20 points and problem 5 is worth 25 points.

- 1. Let (Ω, \mathcal{F}, P) be a probability space and X a random variable mapping X into **R**.
 - (a) Prove that

$$\sum_{n=1}^{\infty} P(|X| \ge n) \le E(|X|) \le 1 + \sum_{n=1}^{\infty} P(|X| \ge n).$$

(b) Let c > 0 be a fixed positive number. Prove that

$$E(|X|) < \infty$$
 if and only if $\sum_{n=1}^{\infty} P(|X| \ge cn) < \infty$.

Conclude that if $\sum_{n=1}^{\infty} P(|X| \ge cn) < \infty$ for one value of c > 0, then this series converges for all values of c > 0.

- 2. Let (Ω, \mathcal{F}, P) be a probability space, X an integrable random mapping X into \mathbf{R} , and \mathcal{G} a σ -algebra of subsets of Ω satisfying $\mathcal{G} \subset \mathcal{F}$ (i.e., \mathcal{G} is a σ -subalgebra of \mathcal{F}).
 - (a) State the properties that characterize $E(X|\mathcal{G})$, the conditional expectation of X with respect to \mathcal{G} .
 - (b) Using a well known theorem in measure theory, prove that $E(X|\mathcal{G})$ exists.
 - (c) Let Y be another integrable random variable mapping X into **R**. Prove that if $X \leq Y$ a.s., then $E(X|\mathcal{G}) \leq E(Y|\mathcal{G})$ a.s.
 - (d) Let $\mathcal{A} = \{A_j, j \in \mathbb{N}\}$ be a countable collection of disjoint subsets of \mathcal{F} satisfying $P(A_j) > 0$ for all $j \in \mathbb{N}$. Define \mathcal{G} to be the σ -subalgebra of \mathcal{F} generated by \mathcal{A} .
 - (i) Describe the form of the sets in \mathcal{G} .
 - (ii) Give a formula for $E(X|\mathcal{G})$ involving the sets A_j .

- 3. Let (Ω, \mathcal{F}, P) be a probability space and $\{X_i, i \in \mathbf{N}\}$ a sequence of independent, identically distributed random variables mapping Ω into \mathbf{R} and satisfying $E(X_i) = 0$ and $M = E(|X_i|^4) < \infty$ for all $i \in \mathbf{N}$. Define $S_n = \sum_{i=1}^n X_i$.
 - (a) Prove that $\sigma^2 = E(|X_i|^2) < \infty$ for all $i \in \mathbb{N}$. Then use this fact to prove the weak law of large numbers for S_n/n . Prove the weak law of large numbers directly; do not deduce it from part (c) of this problem.
 - (b) Prove that for any $\delta > 0$ there exists $C < \infty$ such that for all $n \in \mathbb{N}$

$$P(|S_n/n| \ge \delta) \le C/n^2$$
.

- (c) Prove the strong law of large numbers for S_n/n . (**Hint.** Using part (b), derive a suitable upper bound for $P(A^c)$, where $A = \{S_n/n \to 0\}$).
- 4. Let X_1, \ldots, X_n be i.i.d. from a gamma distribution with parameters α and γ , both positive; i.e.,

$$f(x_i) = \frac{x_i^{\alpha - 1} e^{-x_i/\gamma}}{\Gamma(\alpha)\gamma^{\alpha}} I_{(0,\infty)}(x_i)$$

- (a) Write out the log-likelihood function and get the likelihood/score equations for obtaining the maximum likelihood estimates of α and γ . You can just leave the derivative of $\Gamma(\alpha)$ denoted as $\Gamma'(\alpha)$ in your solution.
- (b) Find the Fisher Information matrix.
- (c) The likelihood equations do not have a closed form solution. Describe how you would proceed using either Fisher's scoring method or Newton-Raphson to proceed iteratively to obtain a solution to the likelihood equation (assuming for now that it exists).
- (d) Assuming that $g(\alpha) = log(\alpha) (\Gamma'(\alpha)/\Gamma(\alpha))$ is monotonic in α , argue that a solution to the likelihood equations exists almost surely.
- 5. Let $X_1, \ldots X_n$ be i.i.d. $N(\mu, \sigma^2)$.
 - (a) Find a set of two complete sufficient statistics. Note: You can apply a result for exponential families, but state it carefully and justify any conditions that need to hold to use the result.

- (b) Find the UMVUE for each of μ , σ^2 and σ . State (without proof) what general result you are applying to construct UMVUE's but be sure to prove the unbiasedness of your answers. HINT: Recall that a chi-square with d degrees of freedom, is equivalent to a gamma distribution from the previous problem with $\alpha = d/2$ and $\gamma = 2$.
- (c) Consider testing $H_0: \mu \geq \mu_0$ versus $H_A: \mu < 0$. and define $T = (\bar{X} \mu_0)/(S/n^{1/2})$ where $\bar{X} = \sum_i X_i/n$ and $S^2 = \sum_i (X_i \bar{X})^2/(n-1)$.

Note: In answering this question you can use without proof what you know about distribution of the sample mean \bar{X} and sample variance S^2 and the fact that they are independent.

- i. First argue that when $\mu = \mu_0$, T is distributed t with n-1 degrees of freedom.
- ii. Show that the test which rejects H_0 if $T < -t_{n-1,\alpha}$ is a likelihood ratio test, where $t_{n-1,\alpha}$ is the 100α the percentile of the t with n-1 degrees of freedom.
- iii. Define the size of a test and argue that this test has size α . Note that you need to define the power function in doing this and address the monotonicity of the power function. Hint: Think conditioning.
- (d) Now, drop the normality assumption.
 - First prove that S^2 is unbiased for σ^2 . Assume the second moment of X_i is finite.
 - Now, assuming that $E(X_i^4) < \infty$, prove that S^2 converges in probability to (i.e., is consistent for) σ^2 . (Aside: This is a key piece in arguing that the limiting distribution of T as n increases is a standard normal, which provides a robust large sample test for the problem in part c)).