NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Friday, January 15, 2010

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on IR is not specified, use the Borel σ -algebra.

1. Let (X, \mathcal{M}, μ) be a measure space and let f be a measurable function such that

$$\varphi(t) \equiv \int e^{tf} d\mu$$

is finite for all $t \in \mathbb{R}$.

(a) Prove that for all $t \in \mathbb{R}$ the derivative $\varphi'(t)$ exists, and that $\int f d\mu$ exists and is given by

$$\int f d\mu = \varphi'(0) .$$

Hint: One possible proof uses the following inequality, which you can use without proof: for any real numbers h and x

$$\left| \frac{e^{hx} - 1}{h} \right| \le e^{(1+|h|)|x|} < e^{(1+|h|)x} + e^{-(1+|h|)x}.$$

(b) Prove that for all $n \in I\!\!N$ and $t \in I\!\!R$ the n^{th} derivative $\varphi^{(n)}(t)$ exists, and that $\int f^n d\mu$ exists and is given by

$$\int f^n d\mu = \varphi^{(n)}(0) .$$

Hint: Use induction over n.

- 2. Let $\{F_n(z), n \in I\!\!N\}$ be a sequence of continuous functions mapping $I\!\!R$ into $I\!\!R$ with the following properties:
 - (i) $F_n(z) \ge 0$ for all $z \in IR$ for all $n \in IN$.
 - (ii) For any $\delta > 0$, $\lim_{n \to \infty} \int_{|z| > \delta} F_n(z) dz = 0$.
 - (iii) $\int_{-\infty}^{\infty} F_n(z) dz = 1$ for all $n \in \mathbb{N}$.

For any bounded, uniformly continuous function g mapping $I\!\!R$ into $I\!\!R$, define

$$K_n(x) = \int_{-\infty}^{\infty} F_n(x-y)g(y) dy.$$

(a) Prove that

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |K_n(x) - g(x)| = 0.$$

(b) Define $\psi_n(z) = \sqrt{n/2\pi} \cdot \exp(-nz^2/2)$. Prove that $\psi_n(z)$ satisfies the properties (i)–(iii). **Hint:** Use without proof the fact that $\int_{-\infty}^{\infty} \exp(-z^2/2) dz = \sqrt{2\pi}$.

3. Let f be a nonnegative Lebesgue integrable function on $[0,\infty)$. For $x\in[0,\infty)$ define

$$F(x) = \int_0^x f dm.$$

- (a) Prove that F satisfies the properties required (via Carathéodory's procedure) to guaranteee the existence of a unique Borel measure μ_F on $[0,\infty)$ satisfying $\mu_F((a,b])=F(b)-F(a)$ for all $0\leq a< b<\infty$.
- (b) Prove that $\mu_F \ll m$ and calculate the Radon-Nykodym derivative $\frac{d\mu_F}{dm}$.

- 4. Let \mathcal{X} be a Banach space and let $U: \mathcal{X} \to \mathbb{R}$ be a linear map.
 - (a) Show that the following are equivalent
 - (i) U is continuous.
 - (ii) U is continuous at 0.
 - (iii) U is bounded.
 - (b) Give the definition of the norm of U, ||U||.
 - (c) Let $L(\mathcal{X}, I\!\!R)$ denote the space of all bounded, linear maps U from \mathcal{X} into $I\!\!R$. It is easily verified that $L(\mathcal{X}, I\!\!R)$ is a normed vector space with norm $\|U\|$. Prove that the normed vector space $L(\mathcal{X}, I\!\!R)$ is complete and is therefore a Banach space.

- 5. Let (X, \mathcal{M}, μ) be a measure space and suppose that $f \in L^1(\mu) \cap L^2(\mu)$.
 - (a) Prove that $f \in L^p(\mu)$ for $1 \le p \le 2$.
 - (b) Prove that $\lim_{p\to 1+} \|f\|_p = \|f\|_1$.

Hints: Consider the set $A = \{x \in X : |f(x)| \ge 1\}$ and its complement A^c . Use the Dominated Convergence Theorem for part (b).

6. For any measurable function f defined on $(0, \infty)$ define the function g(s) for s > 0 by

$$g(s) = \int_0^\infty e^{-st} f(t) dt.$$

The function g(s) is called the *Laplace transform of* f, provided the integral is finite for all s > 0.

- (a) Prove that for $f \in L^2((0,\infty))$ the function g(s) is finite for any s > 0.
- (b) Prove the formula

$$\int_0^\infty e^{-st} t^{-1/2} dt = s^{-1/2} \sqrt{\pi}.$$

Hint: Use without proof the fact that $\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$.

(c) Using part (b), prove that

$$|g(s)|^2 \le \sqrt{\pi}s^{-1/2} \int_0^\infty |f(t)|^2 e^{-st} t^{1/2} dt.$$

(d) Using parts (b) and (c), prove that $||g||_{L^2} \le \pi ||f||_{L^2}$ and thus that the Laplace transform maps $L^2((0,\infty))$ into itself.

7. The set $\left\{\frac{1}{\sqrt{2\pi}}e^{inx}, n \in \mathbb{Z}\right\}$ is an orthonormal basis of the Hilbert space $L^2([-\pi, \pi])$. For $f \in L^2([-\pi, \pi])$ and $n \in \mathbb{Z}$ define

$$c_n = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$$

and for $k \in I\!\!N$ define

$$S_k = \frac{1}{\sqrt{2\pi}} \sum_{n \in \mathbb{Z}, |n| \le k} c_n e^{inx}.$$

- (a) In what sense does $S_k \to f$ as $k \to \infty$? Explain your answer.
- (b) Using part (a), prove that for any real numbers a and b satisfying $-\pi \le a < b \le \pi$

$$\int_a^b f(x) dx = \sum_{n \in \mathbb{Z}} \frac{1}{\sqrt{2\pi}} \int_a^b c_n e^{inx} dx.$$

(c) Use part (b) to prove the formula

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \sum_{k \in \mathbb{N}} \frac{1}{(2k-1)^2}.$$

Hints: Choose f(x) = x, a = 0, and $b = \pi$, and evaluate c_n .

- 8. Let (X, \mathcal{M}, μ) be a measure space and let $\{f_n, n \in N\}$ be a sequence of nonnegative integrable functions. Suppose there exists an integrable function f such that
 - (i) $\lim_{n\to\infty} f_n(x) = f(x)$ almost everywhere.
 - (ii) $\lim_{n\to\infty} \int_X f_n d\mu = \int f d\mu$.

Given E any measurable subset of X, prove that

$$\lim_{n\to\infty} \int_E f_n d\mu \,=\, \int_E f d\mu \,.$$

Hints: Use without proof the fact that a sequence of real numbers converges to $x \in \mathbb{R}$ if every subsequence has a subsubsequence converging to x. Also use Fatou's Lemma for $f_n 1_E$ and $f_n 1_{E^c}$ for appropriate n.