NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Monday, August 31, 2009

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers clearly in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on \mathbb{R} is not specified, use the Borel σ -algebra $\mathcal{B}_{\mathbb{R}}$

1. Let (X, \mathcal{M}, μ) be a measure space and (Y, \mathcal{N}) a measurable space. Let $T: X \to Y$ be a measurable function.

(a) Define a set function ν on \mathcal{N} by $\nu(A) = \mu(T^{-1}(A))$ for every $A \in \mathcal{N}$. Prove that ν is a measure on \mathcal{N} .

(b) Prove that if $f \in L^1(\nu)$, then $f \circ T \in L^1(\mu)$ and that

$$\int_Y f \, d\nu = \int_X (f \circ T) \, d\mu.$$

(c) Consider (X, \mathcal{M}, μ) and (Y, \mathcal{N}) as in line 1 of this problem and consider the measure ν defined in part (a). Assume that $\mu(X) < \infty$ and that γ is a finite measure on (Y, \mathcal{N}) satisfying $\nu \ll \gamma$. By using part (b) and quoting a well known theorem in measure theory, prove that there exists $g \in L^1(\gamma)$ such that

$$\int_X (f \circ T) \, d\mu \ = \ \int_Y f \, g \, d\gamma \ \text{ for each } f \in L^1(\nu).$$

2. Let $\mu = \nu$ be counting measure on the set \mathbb{N} of positive integers; i.e., for $A \subset \mathbb{N}$, $\mu(A) = \nu(A)$ equals the cardinality of A. Define a function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} 2 - 2^{-x} & \text{if } x = y \\ -2 + 2^{-x} & \text{if } x = y + 1 \\ 0 & \text{otherwise.} \end{cases}$$

Consider the two iterated integrals

$$\int_{\mathbb{N}} \left(\int_{\mathbb{N}} f(x,y) d\mu(x) \right) d\nu(y) \text{ and } \int_{\mathbb{N}} \left(\int_{\mathbb{N}} f(x,y) d\nu(y) \right) d\mu(x).$$

- (a) Prove that both of these iterated integrals exist.
- (b) Compute the values of these two iterated integrals.
- (c) Expain why your answers to parts (a) and (b) do not contradict the Fubini-Tonelli Theorem.

- 3. Let X be a Banach space with norm $\|\cdot\|$ and let L(X, X) be the space of all bounded, linear operators mapping X into X.
 - (a) For $U \in L(X, X)$ give the definition of ||U||.
 - (b) Assume that $U \in L(X, X)$ satisfies ||I U|| < 1, where I is the identity operator. Prove that U is invertible and that $\sum_{n=0}^{\infty} (I U)^n$ converges in L(X, X) to U^{-1} .

(c) Assume that $U \in L(X, X)$ is invertible and that $W \in L(X, X)$ satisfies $||W - U|| < ||U^{-1}||^{-1}$. Prove that W is invertible. 4. Let *H* be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. Let *u* and *v* be linearly independent, <u>unit</u> vectors in *H*. Define *M* to be the linear span of *u* and *v*.

(a) Determine a <u>unit</u> vector w such that $\langle u, w \rangle = 0$ and the linear span of u and w equals M. Be sure that you verify the latter statement about the linear span of u and w.

(b) Let x be an element in $H \setminus M$. Determine explicitly, in terms of u and w, a $y_0 \in M$ such that

$$||x - y_0|| = \inf\{||x - z|| : z \in M\}.$$

(c) Prove that the y_0 found in part (b) is unique and re-express it in terms of u and v.

5. Let *m* be Lebesgue measure on \mathbb{R} . Let *f* be a bounded, measurable function mapping \mathbb{R} into $[0,\infty)$ and satisfying

$$\int_{\mathbb{R}} f \, dm = K \text{ for some } 0 < K < \infty.$$

Compute

$$\lim_{n \to \infty} \int_{\mathbb{R}} n \log \left[1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right] dm$$

for constant $\alpha > 0$ in the following three cases:

- (a) $0 < \alpha < 1$,
- (b) $\alpha = 1$,
- (c) $1 < \alpha < \infty$.

(Hint. Use Fatou's Lemma in part (a).)

6. Let *H* be a Hilbert space. Recall that if *M* is a closed subspace of *H*, then one can define a linear operator $P_M : H \to H$ by defining $P_M x$ to be the element of *M* such that $x - P_M x \in M^{\perp}$. P_M is called the orthogonal projection of *H* onto *M*.

Assume that there exists a sequence $\{M_n, n \in \mathbb{N}\}$ of closed subspaces of H such that for all $n \in \mathbb{N}$ we have $M_n \subset M_{n+1}$. In this case we define

$$Y = \overline{\bigcup_{n=1}^{\infty} M_n};$$

i.e., Y equals the closure of the union of all the subspaces M_n .

(a) Prove that Y is a closed subspace of H.

(b) Prove that for all $x \in H$, $||x - P_{M_n}x|| \to ||x - P_Yx||$ as $n \to \infty$. The linear operator P_Y is well defined because of part (a).

(c) Prove that for all $x \in H$, $P_{M_n}x$ converges to P_Yx as $n \to \infty$. (Hint. Use part (a) and the Pythagorean Theorem.)

7. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces. Let K(x, y) be a measurable function mapping $X \times Y$ into \mathbb{R} with the following property. There exists a finite constant M > 0 such that for μ -almost every x

$$\int_{Y} |K(x,y)| \, d\nu(y) \le M$$

and for ν -almost every y

$$\int_X |K(x,y)| \, d\mu(x) \le M.$$

Prove that the operator

$$T: f \mapsto \int_{X \times Y} K(x, y) f(y) \, d\nu(y)$$

is a bounded operator from $L^p(Y)$ into $L^p(X)$ for all $1 \le p \le \infty$. Also prove that the operator norm of T does not exceed M. (**Hint.** For 1 first compute a suitable bound on <math>|Tf(x)|by applying Hölder's inequality to an appropriate factorization of the integrand.)

- 8. Let m be Lebesgue measure on \mathbb{R} . Let $\{f_n, n \in \mathbb{N}\}$ be a sequence of measurable functions on \mathbb{R} and let f be a measurable function on \mathbb{R} .
 - (a) Define the concept that the sequence $\{f_n, n \in \mathbb{N}\}$ converges to f in measure.

(b) Assume that the sequence $\{f_n, n \in \mathbb{N}\}$ converges to f in measure. Prove that there exists a subsequence $\{f_{n_k}, k \in \mathbb{N}\}$ that converges to f almost everywhere. (**Hint.** Prove that there exist positive integers $1 \le n_1 < n_2 \ldots < n_k < \ldots$ such that for all $k \in \mathbb{N}$

$$m\{x \in \mathbb{R} : |f_{n_k}(x) - f(x)| \ge 2^{-k}\} \le 2^{-k}.$$