NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Friday, January 23, 2009

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers clearly in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on $\mathbb R$ is not specified, use the Borel σ -algebra $\mathcal B_{\mathbb R}$

1. Let $A \subseteq \mathbb{R}$ be an arbitrary subset of the real line that is not necessarily Lebesgue measurable, and let $m^*(A)$ denote the Lebesgue outer measure of A. Prove that there exists a Borel set $B \subseteq \mathbb{R}$ such that $A \subseteq B$ and $m(B) = m^*(A)$.

- 2. Let (X, \mathcal{M}, μ) be a *finite* measure space and let $\{h_n, n \in \mathbb{N}\}$ be a sequence of nonnegative, Borel-measurable functions satisfying $h_n \to 0$ in L^1 as $n \to \infty$.
 - (a) Prove that $\sqrt{h_n} \to 0$ in L^1 as $n \to \infty$. (**Hint.** For each n split X into the set where $h_n \ge \delta$ and the set where $h_n < \delta$.)
 - (b) Give an example to show that h_n^2 need not converge to 0 in L^1 as $n\to\infty$.

3. Let (X,\mathcal{M},μ) be a measure space. Let $\{f_n,n\in\mathbb{N}\}$ be a sequence of integrable functions that converges in measure to another integrable function $f\in L^1(\mu)$. Define $g(x)=\sup_{n\in\mathbb{N}}|f_n(x)|$ for $x\in X$, and assume that g is integrable. Prove that f_n converges to f in L^1 .

4. Let X be a space, and let $X = A_1 \cup A_2 \cup \ldots \cup A_n$ be a finite partition of X into n disjoint, nonempty sets A_1, A_2, \ldots, A_n . Define $\mathcal M$ to be the σ -algebra generated by A_1, A_2, \ldots, A_n (i.e., the collection of sets that are the unions of some, none, or all of the A_j). Let μ be a finite, positive measure on $\mathcal M$ such that $0 < \mu(A_j) < \infty$ for all $j = 1, 2, \ldots, n$, and let ν be a finite, positive measure on $\mathcal B$. Prove that ν is absolutely continuous with respect to μ and that for all $j = 1, 2, \ldots, n$ and all $x \in A_j$

$$\frac{d\nu}{d\mu}(x) = \frac{\nu(A_j)}{\mu(A_j)}.$$

- 5. Let (X, \mathcal{M}, μ) be a measure space, $\{g_n, n \in \mathbb{N}\}$ a sequence of measurable functions mapping X into \mathbb{R} , g a measurable function mapping X into \mathbb{R} , and p a real number satisfying $1 \le p < \infty$.
 - (a) Define the concepts that $g_n \to g$ in measure and that $\|g_n g\|_p \to 0$ (convergence in $L^p(\mu)$).
 - (b) Prove that if $||g_n g||_p \to 0$, then $g_n \to g$ in measure.
 - (c) Assume that there exists a nonnegative $h \in L^p(\mu)$ such that $|g_n(x)| \le h(x)$ for all $x \in X$. Prove that if $g_n \to g$ in measure, then $||g_n g||_p \to 0$. In order to do this, use without proof the following formula, valid for any measurable function f on X:

$$\int_{X} |f|^{p} d\mu = p \int_{0}^{\infty} \alpha^{p-1} \sigma_{f}(\alpha) d\alpha,$$

where $\sigma_f(\alpha) = \mu(\{x \in X : |f(x)| > \alpha\})$. (**Hint.** Prove that $|g(x)| \le h(x)$ a.e. by using a property of a subsequence of g_n .)

6. Let f and g be nonnegative, Borel-measurable, Lebesgue-integrable functions on \mathbb{R} . For $x \in \mathbb{R}$ the convolution of f and g is defined by

$$f * g(x) = \int_{\mathbb{R}} f(x - t)g(t)dm(t).$$

- (a) Prove that f * g(x) = g * f(x) for all $x \in \mathbb{R}$.
- (b) Prove that

$$\int_{\mathbb{R}} f * g(x) \, dm(x) = \int_{\mathbb{R}} f(x) dm(x) \cdot \int_{\mathbb{R}} g(x) dm(x),$$

and conclude that $f * g \in L^1(m)$. (**Hint.** Use without proof that fact that if a function h is Borel-measurable on \mathbb{R} , then the function H(x,t) = h(x-t) is Borel-measurable on $\mathbb{R} \times \mathbb{R}$).

7. Let $\mathcal H$ be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and let F be a subset of H. We denote by $\overline F$ the smallest closed subspace of $\mathcal H$ containing F. We define the set

$$F^{\perp} = \{ u \in \mathcal{H} : \langle u, x \rangle = 0 \text{ for all } x \in F \}.$$

- (a) Prove that F^{\perp} is a closed subspace of \mathcal{H} .
- (b) Prove that $F\subset (F^\perp)^\perp$ and that $\overline{F}^\perp\subset F^\perp.$
- (c) For any closed subspace K of $\mathcal H$ the following is true: $(K^\perp)^\perp=K$. Using this fact (which you need not prove) and part (b), prove that $(F^\perp)^\perp=\overline{F}$.

- 8. (a) State Hölder's Inequality.
 - (b) State Minkowski's Inequality.
 - (c) Let $(\mathcal{X},\mathcal{M},\mu)$ be a measure space and let α , β , and γ be real numbers satisfying $1<\alpha<\infty$, $1<\beta<\infty$, $1<\gamma<\infty$, and

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 1.$$

Use Hölder's Inequality to prove that if $f\in L^{\alpha}(\mu),$ $g\in L^{\beta}(\mu),$ and $h\in L^{\gamma}(\mu),$ then

$$\int_{\mathcal{X}} |f g h| d\mu \le ||f||_{\alpha} ||g||_{\beta} ||h||_{\gamma} < \infty.$$