NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Monday, January 23, 2006

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on IR is not specified, use the Borel σ -algebra.

1. Let (X, \mathcal{M}, μ) be a finite measure space with $\mu(X) > 0$ and let f be a nonnegative, Borel-measurable function mapping X into $[0, \infty)$. For $A \in \mathcal{M}$, define

$$\lambda(A) = \int_A f \, d\mu \, .$$

- (a) Prove that λ is a measure on \mathcal{M} .
- (b) Assume that f is also bounded. Prove that λ is a *finite* measure.
- (c) Assume that $f \neq 0$ a.e. Prove that there exists $A \in \mathcal{M}$ such that $\lambda(A) > 0$. This proves that the measure λ is nontrivial.
- (d) Let g be any nonnegative, Borel-measurable function mapping X into $[0, \infty)$. Prove that

$$\int_X g \, d\lambda = \int_X f g \, d\mu \, .$$

- 2. Let $\mathcal H$ denote the Hilbert space $L^2[0,1]$ with respect to Lebesgue measure. Let $\mathcal D$ denote the span of the functions 1 and x in $\mathcal H$.
 - (a) Determine an orthonormal basis of \mathcal{D} .
 - (b) Is the orthonormal basis that you found in part (a) unique? If not, indicate another orthonormal basis.
 - (c) Define $f(x)=x^2$ for $x\in[0,1].$ Find an element $g\in\mathcal{D}$ satisfying

$$||f - g|| = \inf_{h \in D} ||f - h||.$$

Explain all your steps and state carefully any theorems about Hilbert space that you need.

- 3. Let (X, \mathcal{M}, μ) be a measure space and $\{f_n, n \in \mathbb{N}\}$ a sequence of Borel-measurable functions mapping X into \mathbb{R} .
 - (a) Define the concept $f_n \to 0$ a.e. as $n \to \infty$.
 - (b) We say that $f_n \to 0$ in measure as $n \to \infty$ if for all $\delta > 0$, $\lim_{n \to \infty} \mu(A_n(\delta)) = 0$, where $A_n(\delta)$ is a set defined in terms of f_n and δ . Indicate the definition of $A_n(\delta)$.
 - (c) Let $B = \{x \in X : \lim_{n \to \infty} f_n(x) = 0\}.$
 - (i) Express B^c , the complement of B, as a countable union of a countable intersection of a countable union of the sets $A_n(\delta)$ in part (b) for appropriate choices of δ .
 - (ii) Assume that for any $\delta>0$ there exists $c<\infty$ such that for all $n\in I\!\!N$, $\mu(A_n(\delta))\leq c/n^2$. Prove that $\mu(B^c)=0$. What does this say about the convergence of f_n to 0 as $n\to\infty$.

- 4. Let (X,\mathcal{M},μ) be a finite measure space and let $\{f_n,n\in\mathbb{N}\}$ be a sequence of nonnegative, Borel-measurable functions mapping X into \mathbb{R} and satisfying $f_n\to 0$ in L^1 as $n\to\infty$.
 - (a) Prove that $\sqrt{f_n} \to 0$ in L^1 as $n \to \infty$. (**Hint.** For each n split X into $\{x \in X : f_n \ge \varepsilon\}$ and $\{x \in \mathcal{X} : f_n < \varepsilon\}$.)
 - (b) Give an example to show that f_n^2 need not converge to 0 in L^1 as $n\to\infty$.

- 5. Let (X, \mathcal{M}) be a measurable space; let μ be a finite, positive measure on this space; and let ν be a finite, signed measure on this space. Denote by $|\nu|$ the positive measure that is the total variation of ν . Prove that the following statements (a) and (b) are equivalent:
 - (a) For all $E \in \mathcal{M}$, $|\nu(E)| \leq \mu(E)$.

(b)
$$\nu \ll \mu$$
 and $\left| \frac{d\nu}{d\mu}(x) \right| \leq 1$ for μ -a.e. $x \in X$.

- 6. Let a and b be real numbers satisfying $-\infty < a < b < \infty$. We denote by BV([a,b]) the set of all functions F that map [a,b] into $I\!\!R$ and that are of bounded variation on [a,b].
 - (a) Define the concept that F is of bounded variation on [a, b].
 - (b) Let F be a differentiable function mapping $I\!\!R$ into $I\!\!R$. Prove that if the derivative F' is bounded on $I\!\!R$, then $F \in BV([a,b])$ for any $-\infty < a < b < \infty$. (**Hint.** Use the mean value theorem.)
 - (c) Define

$$G(x) = x^2 \sin(1/x)$$
 and $H(x) = x^2 \sin(1/x^2)$

for $x \neq 0$ and G(0) = H(0) = 0. Prove the following.

- (i) G and H are differentiable at all $x \in \mathbb{R}$, including at x = 0.
- (ii) $G \in BV([-1,1])$, but $H \notin BV([-1,1])$.

7. (a) Lebesgue measure m on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ has the property that for any Borel set E in \mathbb{R} and any real number s,

$$m(E+s) = m(E).$$

What is this property of Lebesgue measure called? You need not prove this property.

- (b) Let g be an arbitrary bounded, Borel-measurable function mapping $I\!\!R$ into $I\!\!R$ and A an arbitrary bounded interval in $I\!\!R$. Prove that $\int_A |g| dm < \infty$.
- (c) Let g be an arbitrary bounded, Borel-measurable function mapping $I\!\!R$ into $I\!\!R$; let $[\alpha,\beta]$ be an arbitrary bounded, closed interval in $I\!\!R$; and let t an arbitrary real number. Using the property of m given in part (a), prove that

$$\int_{[\alpha,\beta]} g(x+t) \, dm(x) = \int_{[\alpha+t,\beta+t]} g(x) \, dm(x) \, .$$

8. Let \mathcal{H} be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and let \mathcal{D} be a nontrivial closed subspace of \mathcal{H} . Define

$$\mathcal{D}^{\perp} = \{ x \in \mathcal{H} : \langle x, y \rangle = 0 \text{ for all } y \in \mathcal{D} \}.$$

According to a basic theorem about Hilbert space, which you need not prove, there exists a unique linear operator P mapping \mathcal{H} into \mathcal{H} and satisfying the following: for all $x \in \mathcal{H}$, $Px \in \mathcal{D}$ and $x - Px \in \mathcal{D}^{\perp}$. P is called the orthogonal projection onto \mathcal{D} .

- (a) Prove the following: (i) $\mathcal{D} \cap \mathcal{D}^{\perp} = \{0\}$; (ii) Px = x for all $x \in \mathcal{D}$; (iii) Px = 0 for all $x \in \mathcal{D}^{\perp}$.
- (b) Prove that ||P|| = 1, where $|| \cdot ||$ denotes the operator norm.
- (c) According to another basic theorem about Hilbert space, which you need not prove, there exists a unique linear operator $P^*: \mathcal{H} \to \mathcal{H}$ with the property that $\langle Px,y\rangle = \langle x,P^*y\rangle$ for all $x,y\in \mathcal{H}$. Using this property of P^* , prove that $P^*=P$. (**Hint.** You may use without proof the fact that $(\mathcal{D}^\perp)^\perp=\mathcal{D}$.)