NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Wednesday, August 31, 2005

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on \mathbb{R} is not specified, use the Borel σ -algebra.
- 1. For $n \in \mathbb{N}$ consider the following functions on \mathbb{R} .

(a)
$$f_n = \frac{1}{n} \cdot 1_{(0,n)}$$
,
(b) $f_n = 1_{(n,n+1)}$,
(c) $f_n = n \cdot 1_{[0,1/n]}$,

(d)
$$f_n = \mathbb{1}_{[j/2^k, (j+1)/2^k]}$$
 if $n = 2^k + j, j \in \mathbb{N}, k \in \mathbb{N}, 0 \le j < 2^k$.

For each sequence $\{f_n, n \in \mathbb{I}N\}$ in (a), (b), (c), (d), determine whether or not $f_n \to 0$ pointwise, $f_n \to 0$ a.e., $f_n \to 0$ uniformly, and $f_n \to 0$ in $L^1(\mathbb{I})$. Explain your answers.

- 2. Let X be a nonempty set, $\mathcal{P}(X)$ the class of all subsets of X, and μ^* a function mapping $\mathcal{P}(X)$ into $[0, \infty]$.
 - (a) What properties must μ^* satisfy if μ^* is an outer measure?

(b) Let $\mathcal{E} \subset \mathcal{P}(X)$ and $\rho : \mathcal{E} \to [0, \infty]$ be such that $\emptyset \in \mathcal{E}, X \in \mathcal{E}$, and $\rho(\emptyset) = 0$. For any $A \subset X$ define

$$\mu^*(A) = \inf\left\{\sum_{j=1}^{\infty} \rho(E_j) : E_j \in \mathcal{E} \text{ and } A \subset \bigcup_{j=1}^{\infty} E_j\right\}.$$

Prove that μ^* is an outer measure.

Let (X, M, μ) be a measure space with 0 < μ(X) < ∞ and let f be a measurable function on X satisfying f(x) > 0 for all x ∈ X.

(a) Let α be any fixed real number satisfying $0 < \alpha < \mu(X) < \infty$. Prove that

$$\inf\left\{\int_E f d\mu : E \in \mathcal{M}, \mu(E) \ge \alpha\right\} > 0.$$

(b) Give an example to show that the result in part (a) is false if one drops the hypothesis that $\mu(X) < \infty$.

4. Let $f \in L^1(\mathbb{R})$ be a function mapping \mathbb{R} into \mathbb{R} .

The Fourier transform \hat{f} of f is defined for $\xi \in I\!\!R$ by

$$\hat{f}(\xi) = \int_{\mathbb{R}} e^{ix\xi} f(x) \, dx \,,$$

where $i = \sqrt{-1}$.

(a) Prove that $\hat{f} \in L^{\infty}(\mathbb{R})$.

(b) Prove that \hat{f} is a uniformly continuous function.

(c) Besides assuming that $f \in L^1(\mathbb{R})$, assume that f has compact support.

Prove that \hat{f} is a C^{∞} function.

Hint. Prove and use the fact that for real numbers x, a, and b, $|e^{ixa} - e^{ixb}| \le |x| |a - b|$.

5. Let \mathcal{H} be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and associated norm $\|\cdot\|$.

(a) Let $T : \mathcal{H} \to \mathcal{H}$ be a linear operator. Define the concept that T is a *bounded* linear operator and give the formula for ||T||.

For the remainder of this problem let $A : \mathcal{H} \to \mathcal{H}$ be a bounded linear operator.

(b) For fixed $z \in \mathcal{H}$ define $\varphi_z(x) = \langle Ax, z \rangle$ for $x \in \mathcal{H}$. Prove that $\varphi_z : \mathcal{H} \to \mathbb{R}$ is a bounded linear functional on \mathcal{H} .

Part (b) implies the following basic fact, which you need not prove: there exists a unique linear operator A^* with the property that

 $\langle Ax, z \rangle = \langle x, A^*z \rangle$ for all $x \in \mathcal{H}$ and $z \in \mathcal{H}$.

- (c) Prove that $||A^*|| = ||A||$.
- (d) Prove that $||A^*A|| = ||A||^2$.
- 6. Let s be a fixed positive number. Prove that

$$\int_0^\infty e^{-sx} \frac{\sin^2 x}{x} \, dx = \frac{1}{4} \log(1 + 4s^{-2})$$

by integrating $e^{-sx} \sin(2xy)$ with respect to $x \in (0, \infty)$, $y \in (0, 1)$ and with respect to $y \in (0, 1)$, $x \in (0, \infty)$. Justify all your steps. (Hint. $\cos(2\theta) = 1 - 2\sin^2 \theta$.)

- 7. Let (X, \mathcal{M}, μ) be a measure space, $\{f_n, n \in \mathbb{N}\}$ a sequence of measurable functions mapping X into \mathbb{R} , f a measurable function mapping X into \mathbb{R} , and p a real number satisfying $1 \le p < \infty$.
 - (a) Define the concepts that $f_n \to f$ in measure and that $||f_n f||_p \to 0$ (convergence in $L^p(X)$).
 - (b) Prove that if $||f_n f||_p \to 0$, then $f_n \to f$ in measure.

(c) Assume that there exists a nonnegative $g \in L^p(X)$ such that $|f_n(x)| \leq g(x)$ for all $x \in X$. Prove that if $f_n \to f$ in measure, then $||f_n - f||_p \to 0$. In order to do this, use without proof the following formula, valid for any measurable function h on X:

$$\int_X |h|^p \, d\mu = p \int_0^\infty \alpha^{p-1} \, \sigma_h(\alpha) \, d\alpha,$$

where $\sigma_h(\alpha) = \mu(\{x \in X : |h(x)| > \alpha\}).$

- 8. Define $g(x) = x^{-1/2}$ for $x \in (0, 1)$ and g(x) = 0 for $x \in \mathbb{R} \setminus (0, 1)$.
 - (a) Evaluate $\int_{I\!\!R} g(x) dx$ and conclude that $g \in L^1(I\!\!R)$.

(b) Let $\{r_k, k \in \mathbb{I} N\}$ be the set of rational numbers in $\mathbb{I} R$ and let $\{a_k, k \in \mathbb{I} R\}$ be any sequence of real numbers satisfying $a_k > 0$ and $\sum_{k \in \mathbb{I} N} a_k < \infty$. In terms of these quantities define for $x \in \mathbb{I} R$

$$f(x) = \sum_{k=1}^{\infty} a_k g(x - r_k)$$

- (i) Prove that $f \in L^1(\mathbb{R})$.
- (ii) Prove that $f \notin L^2([\alpha, \beta])$ for any real numbers α and β satisfying $-\infty < \alpha < \beta < \infty$.