Your Name:

Department of Mathematics and Statistics University of Massachusetts Amherst

Advanced Qualifying Exam- Differential Equations.

January 25th, 2008

This exam consists of seven (7) problems all carrying equal weight. You must do five (5) of them. Passing level: 75% with at least three (3) substantially complete solutions. Please **justify** all your steps properly by indicating (or stating) the result you are using. Please write each problem clearly and neatly in a separate page.

(1) Let f(x) be a smooth vector field on \mathbb{R}^n . Suppose that the maximal interval of existence of the solution x(t) of an initial value problem

$$x' = f(x), \quad x(0) = x_0 \in \mathbb{R}^n$$

is a < t < b, where $0 < b < \infty$. Prove that if K is any compact subset of \mathbb{R}^n , then there exists a sequence $t_n \to b$ with $t_n < b$ such that $x(t_n) \notin K$.

(2) Consider the system of ODEs

(1)
$$\begin{cases} x' = x - x^2 + y \\ y' = bx - y, \end{cases}$$

where b is a positive constant.

Prove that there exists a solution (x(t), y(t)) of (1) satisfying

$$\lim_{t \to -\infty} (x(t),y(t)) = (0,0), \qquad \lim_{t \to +\infty} (x(t),y(t)) = (b+1,b(b+1)).$$

(3) Let $\varphi \in C^1(\mathbb{R})$ with compact support and consider the real-valued function u on the upper half-plane $\mathbb{R}^2_+ = \{x = (x_1, x_2) : x_2 > 0\}$ defined by

$$u(x_1, x_2) := \frac{x_2}{\pi} \int_{\mathbb{R}} \frac{\varphi(y)}{(x_1 - y)^2 + x_2^2} dy$$

- (a) What PDE and type of problem does u satisfy on the upper half-plane? (Be precise and explain your answer.)
 - **(b)** Prove that for each $x = (x_1, x_2) \in \mathbb{R}^2_+$,

$$1 = \int_{\mathbb{R}} K(x, y) \, dy$$

where $K(x,y) = \frac{x_2}{\pi} \frac{1}{|x-y|^2}, \ y \in \mathbb{R} = \partial \mathbb{R}^2_+$.

(c) Use (b) to prove rigorously that for each $x^0 \in \mathbb{R} = \partial \mathbb{R}^2_+$,

$$\lim_{x \to x^0, x \in \mathbb{R}^2_+} u(x) = \varphi(x^0).$$

(Hint: Note that by hypothesis φ is bounded and uniformly continuous.)

(4) Suppose that p(u) is a smooth, real-valued function of $u \in \mathbb{R}^n$ such that $p(u) \to \infty$ as $|u| \to \infty$, and such that the gradient of p, $\nabla p(u)$, vanishes at exactly N distinct points, c_1, \ldots, c_N , where N > 1. Suppose that $p(c_1) < \cdots < p(c_N)$, and in addition that the Hessian matrix, $\nabla^2 p(u)$ at $u = c_N$ has exactly one negative eigenvalue $\lambda_1 < 0$ and n - 1 positive eigenvalues $\lambda_j > 0$, $2 \le j \le n$.

Prove that there is a solution u(t) of the gradient system

$$u' = -\nabla p(u),$$

that satisfies the limiting conditions

$$\lim_{t \to -\infty} u(t) = c_N, \quad \lim_{t \to +\infty} u(t) = c_k,$$

for some critical point c_k with $k \leq N - 1$.

(5) Let u be the solution to the homogeneous wave equation

$$\partial_{tt}u - \Delta u = 0$$
, on \mathbb{R}^{n+1} $u(x,0) = g(x)$, $\partial_t u(x,0) = h(x)$,

where g and h are in $\mathcal{S}(\mathbb{R}^n)$, the space of Schwartz functions.

- (a) Use the Fourier transform to find an expression for $\widehat{u}(\xi,t), \xi \in \mathbb{R}^n$.
- (b) Use (a), the properties of the Fourier transform and the characterization of the Sobolev spaces $H^s(\mathbb{R}^n)$ via the Fourier transform to prove that for any fixed $s \geq 0$

$$||u(t)||_{H^{s}(\mathbb{R}^{n})} \le \text{const.} \left(||g||_{H^{s}(\mathbb{R}^{n})} + (1+t) ||h||_{H^{s-1}(\mathbb{R}^{n})} \right)$$

for all t > 0. (Hint: Do not attempt to find u(x,t) but rather work with $\widehat{u}(\xi,t)$.)

(6) Let I=(0,1) and let $u:\bar{I}\times[0,T]$ be a smooth solution to the mixed initial/boundary value problem

(1)
$$\begin{cases} u_{tt} - u_{xx} + \alpha u_t = 0 & \text{on } I \times (0, T] \\ u \equiv 0 & \text{on } \{x = 0\} \times [0, T] \cup \{x = 1\} \times [0, T] \\ u = g, & \text{and } \partial_t u = h & \text{on } I \times \{t = 0\} \end{cases}$$

where $g, h \in C_c^{\infty}(I)$ (smooth and compactly supported functions), and α is a **positive** constant.

Let $E[u] := \frac{1}{2} \int_0^1 |u_t|^2 + |u_x|^2 dx$ be the 'energy' associated to (1) where the integrand is understood to be evaluated at (x,t).

- (a) Prove that $E(t) \leq E(0)$ for all $t \in (0, T]$.
- **(b)** Prove the uniqueness of classical solutions to (1).
- (7) Let $a \in \mathbb{R}$, $a \neq 0$. Let δ be the Dirac delta distribution and H(x) be the Heavside function H(x) = 1 if x > 0 and 0 if $x \leq 0$.
 - (a) Prove that $e^{-ax}\delta = \delta$ and find H' both understood in the sense of distributions.
 - (b) Find the fundamental solution for

(1)
$$L = \frac{d}{dx} - a \quad \text{on } \mathbb{R};$$

that is, find the solution in the sense of distributions of $\frac{du}{dx} - a u = \delta$ and check your answer indeed satisfies (1) in de sense of distributions. (Hint. consider e^{-ax} as integrating factor).

(c) Let $L = -\frac{d^2}{dx^2} - a^2$ on \mathbb{R} and let $u(x) = \frac{1}{a}\sinh(ax)$ if x > 0 and 0 if $x \le 0$. Prove that $Lu = \delta$ in the sense of distributions.

(Hint. Recall that $\sinh x = 1/2 (e^x - e^{-x})$ and $\cosh x = 1/2 (e^x + e^{-x})$.)