DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS ADVANCED EXAM - DIFFERENTIAL EQUATIONS August, 2001

Do five of the following problems. All problems carry equal weight. Passing level: 75% with at least three substantially complete solutions.

1. Consider the Cauchy problem for the forced wave equation in one dimension:

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = f(x, t),$$

$$u(x, 0) = 0, \qquad \frac{\partial u}{\partial t}(x, 0) = 0.$$

- (a) Use Duhamel's principle to derive a formula for u(x,t).
- (b) Find the solution u when the forcing is a harmonic point source with frequency ω moving with velocity v,

$$f(x,t) = \delta(x - vt) \sin \omega t$$
, with $0 < v < c$.

Exhibit the solution only for x > 0, $\frac{x}{c} < t < \frac{x}{v}$.

(c) Show that this demonstrates the Doppler effect: the harmonic oscillation at x over the time interval in which the source approaches x has frequency

$$\widetilde{\omega} = \frac{\omega}{1 - v/c} > \omega.$$

2. (a) Show that the Lorentz equations

$$\begin{aligned} \dot{x} &= -\sigma (x - y) \\ \dot{y} &= r x - y - x z \\ \dot{z} &= -b z + x y, \end{aligned}$$

(where σ , r and b are positive constants), has a hyperbolic fixed point of saddle type at the origin (0,0,0), provided r > 1.

- (b) Characterize precisely the tangent space to the stable manifold at the origin, for r > 1.
- 3. Suppose $u \in H^1(\Omega)$ is a weak solution to

$$\Delta u = 0$$
 in Ω , $u = 0$ on $\partial \Omega$,

where Ω is a regular open subset of the plane \mathbb{R}^2 . Show that for any compact $K \subset \Omega$, there is a constant C (independent of u) such that

$$\int_K |\nabla u|^2 \ dx \ dy \le C \ \int_\Omega u^2 \ dx \ dy.$$

4. Suppose that f(x) is a smooth vector field on \mathbb{R}^n , and that f(0) = 0. Let λ_i be the eigenvalues of Df(0), and assume that $\operatorname{Re} \lambda_i < 0$ for $1 \leq i \leq n$. Find $\delta > 0$ and $\alpha > 0$ so that every solution x(t) of

$$\frac{dx}{dt} = f(x)$$

with $|x(0)| < \delta$ satisfies

$$|x(t)| < \delta e^{-\alpha t}$$

for $t \ge 0$. [Give details - don't just cite a theorem.]

5. Consider the system

$$x' = -\lambda(x^2 + y^2) x + \omega(x^2 + y^2) y$$

$$y' = -\omega(x^2 + y^2) x - \lambda(x^2 + y^2) y$$

where $\lambda(r)$ and $\omega(r)$ are given smooth functions of $r \geq 0$.

- (a) Determine whether the rest point (x, y) = (0, 0) is stable or unstable in terms of $\lambda(0)$, whenever $\lambda(0) \neq 0$. What is the qualitative behavior when $\lambda(0) < 0$ and $\omega(0) > 0$?
- (b) Suppose now that

$$\lambda(r) = r(1-r)(2-r)$$
 and $\omega(r) = (\frac{1}{2}-r)(\frac{3}{2}-r)$.

Show that every ω -limit set of a point (\bar{x}, \bar{y}) is either the rest point (0,0) or a periodic orbit lying on one of the two circles

$$x^2 + y^2 = 1$$
 or $x^2 + y^2 = 2$.

[Hint: Consider a suitable Liapunov function.]

6. Suppose $u \in \mathbb{R}^3$ is a classical solution of the linear elasticity equations,

$$m u_{tt} - \mu \Delta u - (\lambda + \mu) \operatorname{grad}(\operatorname{div} u) = 0,$$

with initial data having compact support. Show that the energy

$$E(t) = \int [m u_t^2 + \mu (\operatorname{grad} u)^2 + (\lambda + \mu) (\operatorname{div} u)^2] dx$$

is conserved, and use this to show that solutions are unique.

7. Suppose that u(x,t) solves the heat equation in the parabolic cylinder U_T . Show that

$$v(x,t) = u_t^2 + |\nabla u|^2$$

is a subsolution, i.e. satisfies

$$v_t - \Delta v \le 0$$

in U_T .