DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS ADVANCED EXAM - DIFFERENTIAL EQUATIONS
 August, 2001

Do five of the following problems. All problems carry equal weight. Passing level: 75% with at least three substantially complete solutions.

1. Consider the Cauchy problem for the forced wave equation in one dimension:

$$
\begin{array}{r}
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=f(x, t) \\
u(x, 0)=0, \quad \frac{\partial u}{\partial t}(x, 0)=0
\end{array}
$$

(a) Use Duhamel's principle to derive a formula for $u(x, t)$.
(b) Find the solution u when the forcing is a harmonic point source with frequency ω moving with velocity v,

$$
f(x, t)=\delta(x-v t) \sin \omega t, \quad \text { with } \quad 0<v<c
$$

Exhibit the solution only for $x>0, \frac{x}{c}<t<\frac{x}{v}$.
(c) Show that this demonstrates the Doppler effect: the harmonic oscillation at x over the time interval in which the source approaches x has frequency

$$
\widetilde{\omega}=\frac{\omega}{1-v / c}>\omega
$$

2. (a) Show that the Lorentz equations

$$
\begin{aligned}
\dot{x} & =-\sigma(x-y) \\
\dot{y} & =r x-y-x z \\
\dot{z} & =-b z+x y
\end{aligned}
$$

(where σ, r and b are positive constants), has a hyperbolic fixed point of saddle type at the origin $(0,0,0)$, provided $r>1$.
(b) Characterize precisely the tangent space to the stable manifold at the origin, for $r>1$.
3. Suppose $u \in H^{1}(\Omega)$ is a weak solution to

$$
\begin{gathered}
\Delta u=0 \quad \text { in } \quad \Omega \\
u=0 \quad \text { on } \quad \partial \Omega
\end{gathered}
$$

where Ω is a regular open subset of the plane R^{2}. Show that for any compact $K \subset \Omega$, there is a constant C (independent of u) such that

$$
\int_{K}|\nabla u|^{2} d x d y \leq C \int_{\Omega} u^{2} d x d y
$$

4. Suppose that $f(x)$ is a smooth vector field on R^{n}, and that $f(0)=0$. Let λ_{i} be the eigenvalues of $D f(0)$, and assume that $R e \lambda_{i}<0$ for $1 \leq i \leq n$. Find $\delta>0$ and $\alpha>0$ so that every solution $x(t)$ of

$$
\frac{d x}{d t}=f(x)
$$

with $|x(0)|<\delta$ satisfies

$$
|x(t)|<\delta e^{-\alpha t}
$$

for $t \geq 0$. [Give details - don't just cite a theorem.]
5. Consider the system

$$
\begin{aligned}
x^{\prime} & =-\lambda\left(x^{2}+y^{2}\right) x+\omega\left(x^{2}+y^{2}\right) y \\
y^{\prime} & =-\omega\left(x^{2}+y^{2}\right) x-\lambda\left(x^{2}+y^{2}\right) y
\end{aligned}
$$

where $\lambda(r)$ and $\omega(r)$ are given smooth functions of $r \geq 0$.
(a) Determine whether the rest point $(x, y)=(0,0)$ is stable or unstable in terms of $\lambda(0)$, whenever $\lambda(0) \neq 0$. What is the qualitative behavior when $\lambda(0)<0$ and $\omega(0)>0$?
(b) Suppose now that

$$
\lambda(r)=r(1-r)(2-r) \quad \text { and } \quad \omega(r)=\left(\frac{1}{2}-r\right)\left(\frac{3}{2}-r\right)
$$

Show that every ω-limit set of a point (\bar{x}, \bar{y}) is either the rest point $(0,0)$ or a periodic orbit lying on one of the two circles

$$
x^{2}+y^{2}=1 \quad \text { or } \quad x^{2}+y^{2}=2 .
$$

[Hint: Consider a suitable Liapunov function.]
6. Suppose $u \in R^{3}$ is a classical solution of the linear elasticity equations,

$$
m u_{t t}-\mu \Delta u-(\lambda+\mu) \operatorname{grad}(\operatorname{div} u)=0
$$

with initial data having compact support. Show that the energy

$$
E(t)=\int\left[m u_{t}^{2}+\mu(\operatorname{grad} u)^{2}+(\lambda+\mu)(\operatorname{div} u)^{2}\right] d x
$$

is conserved, and use this to show that solutions are unique.
7. Suppose that $u(x, t)$ solves the heat equation in the parabolic cylinder U_{T}. Show that

$$
v(x, t)=u_{t}^{2}+|\nabla u|^{2}
$$

is a subsolution, i.e. satisfies

$$
v_{t}-\Delta v \leq 0
$$

in U_{T}.

