University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry
 September 1, 2004

Do 5 out of the following 7 questions. Indicate clearly which questions you want to have graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.

Problem 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
f(u, v)=(\sinh u \cos v, \sinh u \sin v, v) .
$$

a) Show that $M=f\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{3}$ is a 2-dimensional submanifold.
b) Compute the Gaussian curvature of M with the metric induced from \mathbb{R}^{3}.
c) Write the geodesic equations for M and determine if, suitably parametrized, any of the coordinate curves $\{u=$ constant $\}$ or $\{v=$ constant $\}$ are geodesics on M.
d) Draw a picture of the surface M.

Problem 2. A $2 n$-dimensional manifold (M, g) is said to be symplectic if there exists a closed 2 -form ω on M such that

$$
\omega^{n}:=\overbrace{\omega \wedge \cdots \wedge \omega}^{n \text { times }}
$$

is nowhere zero. Determine which of the following 4-manifolds are symplectic. Justify your answers.
a) \mathbb{R}^{4}.
b) S^{4}.
c) $S^{2} \times S^{2}$.

Problem 3. Consider the vector fields $V=z \frac{\partial}{\partial x}+x \frac{\partial}{\partial z}$ and $W=$ $y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}$ on \mathbb{R}^{3}.
a) Determine the open set $U \subset \mathbb{R}^{3}$ over which V and W span a 2-dimensional distribution, i.e., a rank 2 subbundle $E \subset T U$ of the tangent bundle $T U$.
b) Find a 1-form α in U such that

$$
E(p)=\left\{X \in T_{p}(U): \alpha(p)(X)=0\right\} \subset T_{p}(U) ; \text { for all } p \in U
$$

c) Show that E is integrable.
d) Find the integral submanifolds of E.

Problem 4. Let X be the C^{∞} vector field on $\mathbb{R}^{n+1} \backslash\{0\}$:

$$
X=\sum_{i=0}^{n+1} x_{i} \frac{\partial}{\partial x_{i}}
$$

a) Prove that X is a complete vector field and compute the oneparameter group of diffeomorphisms (flow) of X.
b) Let $\pi: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow \mathbb{P}^{n}$ denote the natural projection. Show that for every $\alpha \in \Lambda^{k}\left(\mathbb{P}^{n}\right), 1 \leq k \leq n$,

$$
\iota_{X}\left(\pi^{*}(\alpha)\right)=0 .
$$

Problem 5. Let \mathbb{R}^{3} be endowed with the Heisenberg product:

$$
\left(x^{\prime}, y^{\prime}, z^{\prime}\right) *(x, y, z):=\left(x^{\prime}+x, y^{\prime}+y, z^{\prime}+z+x^{\prime} y\right)
$$

You may assume as given that $\left(\mathbb{R}^{3}, *\right)$ is a Lie group.
a) Find a basis of left-invariant vector fields for $\left(R^{3}, *\right)$. Express your answer in terms of the coordinate frame $\{\partial / \partial x, \partial / \partial y, \partial / \partial z\}$.
b) Find a basis of left-invariant 1 -forms on $\left(R^{3}, *\right)$. Express your answer in terms of the coordinate coframe $\{d x, d y, d z\}$.
c) Find a left-invariant metric on $\left(R^{3}, *\right)$. Express your answer in terms of the coordinate coframe $\{d x, d y, d z\}$.
d) Let $\left\{\omega_{j}^{i} ; 1 \leq i, j \leq 3\right\}$ denote the connection forms of the Riemannian (Levi-Civita) connection of the metric constructed in part c) relative to the left-invariant frame constructed in part a). Show that

$$
\omega_{j}^{i}+\omega_{i}^{j}=0
$$

Problem 6. Prove or disprove the following statements:
a) Let $\alpha \in \Lambda^{1}\left(S^{2}\right)$ and suppose $T^{*}(\alpha)=\alpha$ for all $T \in S O(3)$. Then $\alpha=0$.
b) If n is odd then every n-form $\alpha \in \Lambda^{n}\left(\mathbb{P}^{n}\right)$ vanishes at some point.
c) If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a submersion, then $M=f^{-1}(0)$ is an orientable manifold.

Problem 7. Let $E \rightarrow M$ be a real vector bundle of rank r with connection ∇. Show that the following statements are equivalent:
a) ∇ is flat, i.e., its curvature $R^{\nabla}=0$.
b) Near each point there is an open neighborhood $U \subset M$ and a local framing $\left(\psi_{1}, \ldots, \psi_{r}\right)$ of E over U such that $\nabla \psi_{k}=0$, i.e., all the local sections ψ_{k} of the frame are parallel.

