University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry January 22, 2004

Do 5 out of the following 7 questions. Indicate clearly which questions you want to have graded. *Passing standard:* 70% with three problems essentially complete. Justify all your answers.

Problem 1. Identify, in the usual way, $\mathbb{C}^2 \cong \mathbb{R}^4$ and consider the map

$$h \colon \mathbb{C}^2 \to \mathbb{R}^3 \; ; \quad (u, v) \mapsto (2 \operatorname{Re}(u\bar{v}), 2 \operatorname{Im}(u\bar{v}), |u|^2 - |v|^2) \; .$$

Let $S^3 = \{(u, v) \in \mathbb{C}^2 : |u|^2 + |v|^2 = 1\}.$

- a) Prove that $h(S^3) \subset S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ and show that $H = h|_{S^3} : S^3 \to S^2$ is a C^{∞} map.
- b) Show that $H: S^3 \to S^2$ is a surjective submersion.
- c) Let $p = (1/\sqrt{3}, -1/\sqrt{3}, 1/\sqrt{3}) \in S^2$. Determine $H^{-1}(p)$.

Problem 2. Let $M = \mathbb{R}^2$ with the Riemannian metric:

$$g(\partial/\partial x, \partial/\partial x) = e^{x+y}$$
; $g(\partial/\partial y, \partial/\partial y) = e^{x-y}$; $g(\partial/\partial x, \partial/\partial y) = 0$.

- a) Compute the Gaussian curvature of (M, g).
- b) Write, explicitly, the differential equations of a geodesic in (M, g).

Problem 3. Let
$$G = \left\{ \begin{pmatrix} x & 0 & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R}, x \neq 0 \right\}$$

- a) Prove that G is a Lie subgroup of $GL(3,\mathbb{R})$.
- b) Find a basis of left-invariant 1-forms on G.
- c) Find a left-invariant Riemannian metric on G. Write your answer in terms of dx, dy, dz.

Problem 4. Let (M,g) be an oriented Riemannian manifold and let X be a vector field on M.

- (i) Define the divergence of X.
- (ii) Prove that

$$\int_{D} \operatorname{div}(X) = \int_{\partial D} g(X, N)$$

where D is a regular domain in M (i.e., the boundary of D is a smooth hyper surface) and N is the outward unit normal to D.

(iii) Deduce the divergence theorem in \mathbb{R}^2 from this.

Problem 5. Show that over the circle S^1 there are exactly two isomorphism classes of rank r real vector bundles.

Problem 6. Let $M = \mathbb{R}^2/\mathbb{Z}^2$ be a 2-torus and consider the trivial rank n bundle $V = M \times \mathbb{R}^n$ over M. We equip V with the connection $\nabla = d + Adx + Bdy$ where d denotes the trivial connection given by directional derivatives of \mathbb{R}^n -valued functions, A, B are $n \times n$ matrices and dx, dy are the coordinate differentials on \mathbb{R}^2 . Show:

- (i) ∇ is flat if and only if the matrices A, B commute, i.e., [A, B] = 0.
- (ii) Assuming ∇ to be flat compute its holonomy representation $H: \mathbb{Z}^2 \to \mathbf{Gl}(n,\mathbb{R})$.
- (iii) Assuming ∇ to be flat then V admits a non-trivial parallel section if and only if A, B have a common kernel.

Problem 7. Show that any smooth (paracompact, second countable, Hausdorff) manifold M admits a Riemannian metric. What can you say about the non-positive definite case, i.e., pseudo-Riemannian metrics?