University of Massachusetts
 Department of Mathematics and Statistics
 Advanced Exam in Geometry
 January 22, 2004

Do 5 out of the following 7 questions. Indicate clearly which questions you want to have graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.

Problem 1. Identify, in the usual way, $\mathbb{C}^{2} \cong \mathbb{R}^{4}$ and consider the map

$$
h: \mathbb{C}^{2} \rightarrow \mathbb{R}^{3} ; \quad(u, v) \mapsto\left(2 \operatorname{Re}(u \bar{v}), 2 \operatorname{Im}(u \bar{v}),|u|^{2}-|v|^{2}\right) .
$$

Let $S^{3}=\left\{(u, v) \in \mathbb{C}^{2}:|u|^{2}+|v|^{2}=1\right\}$.
a) Prove that $h\left(S^{3}\right) \subset S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$ and show that $H=\left.h\right|_{S^{3}}: S^{3} \rightarrow S^{2}$ is a C^{∞} map.
b) Show that $H: S^{3} \rightarrow S^{2}$ is a surjective submersion.
c) Let $p=(1 / \sqrt{3},-1 / \sqrt{3}, 1 / \sqrt{3}) \in S^{2}$. Determine $H^{-1}(p)$.

Problem 2. Let $M=\mathbb{R}^{2}$ with the Riemannian metric:

$$
g(\partial / \partial x, \partial / \partial x)=e^{x+y} ; \quad g(\partial / \partial y, \partial / \partial y)=e^{x-y} ; \quad g(\partial / \partial x, \partial / \partial y)=0
$$

a) Compute the Gaussian curvature of (M, g).
b) Write, explicitly, the differential equations of a geodesic in (M, g).

Problem 3. Let $G=\left\{\left(\begin{array}{ccc}x & 0 & y \\ 0 & 1 & z \\ 0 & 0 & 1\end{array}\right): x, y, z \in \mathbb{R}, x \neq 0\right\}$
a) Prove that G is a Lie subgroup of $G L(3, \mathbb{R})$.
b) Find a basis of left-invariant 1 -forms on G.
c) Find a left-invariant Riemannian metric on G. Write your answer in terms of $d x, d y, d z$.

Problem 4. Let (M, g) be an oriented Riemannian manifold and let X be a vector field on M.
(i) Define the divergence of X.
(ii) Prove that

$$
\int_{D} \operatorname{div}(X)=\int_{\partial D} g(X, N)
$$

where D is a regular domain in M (i.e., the boundary of D is a smooth hyper surface) and N is the outward unit normal to D .
(iii) Deduce the divergence theorem in \mathbb{R}^{2} from this.

Problem 5. Show that over the circle S^{1} there are exactly two isomorphism classes of rank r real vector bundles.

Problem 6. Let $M=\mathbb{R}^{2} / \mathbb{Z}^{2}$ be a 2-torus and consider the trivial rank n bundle $V=M \times \mathbb{R}^{n}$ over M. We equip V with the connection $\nabla=d+A d x+B d y$ where d denotes the trivial connection given by directional derivatives of \mathbb{R}^{n}-valued functions, A, B are $n \times n$ matrices and $d x, d y$ are the coordinate differentials on \mathbb{R}^{2}. Show:
(i) ∇ is flat if and only if the matrices A, B commute, i.e., $[A, B]=0$.
(ii) Assuming ∇ to be flat compute its holonomy representation $H: \mathbb{Z}^{2} \rightarrow$ $\mathrm{Gl}(n, \mathbb{R})$.
(iii) Assuming ∇ to be flat then V admits a non-trivial parallel section if and only if A, B have a common kernel.

Problem 7. Show that any smooth (paracompact, second countable, Hausdorff) manifold M admits a Riemannian metric. What can you say about the non-positive definite case, i.e., pseudo-Riemannian metrics?

