UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics ADVANCED EXAM - LINEAR MODELS Friday, August 29, 2008

Work all problems. 75 points are required to pass.

- Read the questions carefully.

- Where is says "state ..." you can state the result being asked for without proof.

- 1. (30 PTS) Let Y_1 and Y_2 be independent random variables, $E(Y_i) = \mu + \alpha_i$ for i = 1, 2.
 - (a) Let $\psi = c_1 \alpha_1 + c_2 \alpha_2$, where c_1 and c_2 are constants. Define what it means for ψ to be estimable and then show what condition c_1 and c_2 must satisfy for ψ to be estimable.
 - (b) Use the previous part to show that α_2 is not estimable and then to decide which, if either, of $\alpha_1 + \alpha_2$ and $\alpha_1 \alpha_2$ is estimable.
 - (c) With $\boldsymbol{\beta} = (\mu, \alpha_1, \alpha_2)'$ and $\mathbf{Y}' = (Y_1, Y_2)$, write $E(\mathbf{Y})$ as $\mathbf{X}\boldsymbol{\beta}$. Write out \mathbf{X} , which is 2×3 , explicitly with numbers.
 - (d) Note that **X** is not of full column rank (explain why!) and so the least squares estimate of $\boldsymbol{\beta}$ (which solves $\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{Y}$) is not unique. In order to avoid dealing with the singular matrix $\mathbf{X}'\mathbf{X}$ in computing a least squares estimator for $\boldsymbol{\beta}$ one can impose some side conditions (also called constraints) on linear combinations of $\boldsymbol{\beta}$. What type of side conditions and how many are needed in this problem to force a unique solution to $\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{Y}$? Justify why these side conditions force a unique solution. Note: Part d) is needed to go on with the problem. If you can't get it you can buy the answer (giving up 6 points) in order to proceed.
 - (e) Using the previous part, select a side condition (or conditions) and rewrite the reparameterized model as $E(\mathbf{Y}) = \mathbf{Z} \boldsymbol{\gamma}$. Be sure to specify \mathbf{Z} (which will be 2 × 2 of rank 2) and $\boldsymbol{\gamma}$ explicitly.
 - (f) Now compute the least squares estimate, $\hat{\gamma}$, of γ , explicitly (inverting and multiplying out the matrices) in terms of Y_1 and Y_2 . Then write down a least squares estimate $\hat{\beta}$ of β .
 - (g) Write down the BLUE for $\alpha_1 \alpha_2$ explicitly in terms of Y_1 and Y_2 . Which theorem have you employed to guarantee your answer being the BLUE? State the content of the theorem.

2. (30 PTS) Consider the linear model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{z}\phi + \boldsymbol{\epsilon},\tag{1}$$

with $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $Cov(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}$. **X** is a known $n \times p$ matrix of rank p < n, **z** is a known $n \times 1$ vector and $\boldsymbol{\beta}$ $(p \times 1)$, $\boldsymbol{\phi}$ (scalar) and σ^2 (scalar) are unknown parameters.

- (a) Suppose the $\mathbf{z}\phi$ terms are ignored and the model assuming $E(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$ is fit; leading to $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$, the ordinary least squares estimator using just \mathbf{X} . Let $r_i = Y_i \hat{Y}_i$ denote the resulting *ith* residual (that is using $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$) and let \mathbf{r} be the n by 1 vector of residuals. *Derive* $E(\mathbf{r})$ and $Cov(\mathbf{r})$ (assuming (1) holds).
- (b) A plot of r_i versus z_i (the ith element of \mathbf{z}) is often suggested as a way to assess if the variable z_i should be in the model. Explain (using your expression for $E(\mathbf{r})$) why this plot is often useful and when it might encounter some problems. Assume that if z_i enters into the model it does so via $z_i\phi$.
- (c) Consider a full least squares fit of the model in (1). Let $\mathbf{M} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$. Show that

$$\hat{\phi} = \frac{\mathbf{z}'(\mathbf{I} - \mathbf{M})\mathbf{Y}}{\mathbf{z}'(\mathbf{I} - \mathbf{M})\mathbf{z}}.$$
(2)

Do this by first rewriting (1) as $\mathbf{Y} = \mathbf{X}\boldsymbol{\delta} + (\mathbf{I} - \mathbf{M})\mathbf{z}\phi + \boldsymbol{\epsilon}$ where $\boldsymbol{\delta}$ can involve both parameters and elements of \mathbf{X} and/or \mathbf{z} .

(d) A client says "well, if the plot of r_i versus z_i represents the influence of z_i after accounting for the other variables, is it the case that if I ran a simple linear regression of r_i on Z_i that the slope I get will be the estimate $\hat{\phi}$ in (2) from a full least squares fit of (1)?

Show that the answer to this question is no. Then show however that if we define $\mathbf{w} = (\mathbf{I} - \mathbf{M})\mathbf{z}$ (this is $n \times 1$) and we regress r_i on w_i with NO intercept, then the estimated slope we obtain is exactly $\hat{\phi}$ in (2) from the full least squares fit. (This result suggests that we plot r_i versus w_i rather than just z_i as this plot matches up with the estimate of ϕ from the full least squares approach; this is known as an added variable plot.)

- 3. (40 PTS) Consider the one-factor fixed effects model: $Y_{ij} = \mu_i + \epsilon_{ij}$, i = 1 to I and j = 1 to n_i , where μ_1, \ldots, μ_I , are fixed parameters (means) and the ϵ_{ij} are i.i.d. normal with mean 0 and variance σ^2 .
 - (a) Write this out as a linear model, $\mathbf{Y} = \mathbf{X}\boldsymbol{\mu} + \boldsymbol{\epsilon}$, with $\boldsymbol{\mu}' = (\mu_1, \dots, \mu_I)$ and argue that the least squares estimator of $\boldsymbol{\mu}$ has $\hat{\mu}_i = \bar{Y}_{i.} = \sum_{j=1}^{n_i} Y_{ij}/n_i$. (You can just state the general form of the least squares estimator for a linear model and apply it here.)
 - (b) Show that $\hat{\sigma}^2 = \sum_i (n_i 1) S_i^2 / (n I)$ is an unbiased estimator of σ^2 , where $S_i^2 = \sum_{j=1}^{n_i} (Y_{ij} \bar{Y}_{i.})^2 / (n_i 1)$ and $n = \sum_{\substack{i=1 \ n_i}}^{I} n_i$. (Do this without using the normality assumption.) You can utilize the computing formula $\sum_{j=1}^{n_i} (Y_{ij} \bar{Y}_{i.})^2 = \sum_{j=1}^{n_i} Y_{ij}^2 n_i \bar{Y}_{i.}^2$.
 - (c) Using just the observations from "group" i, collected in $\mathbf{Y}_i = (Y_{i1}, \ldots, Y_{in_i})'$, first write $(n_i 1)S_i^2/\sigma^2$ as a quadratic form in \mathbf{Y}_i . Then state a general theorem on when a quadratic form is distributed chi-square and show how that result applies here to give the distribution of $(n_i 1)S_i^2/\sigma^2$.
 - (d) Use the previous part and whatever else you need to provide the distribution of $(n I)\hat{\sigma}^2/\sigma^2$. For the rest of the problem you can use, without proof, that $\hat{\sigma}^2$ is independent of $\hat{\mu}$.
 - (e) State generally, Scheffe's result for finding simultaneous confidence intervals for a collection of linear combinations of the coefficients in the general linear model. Then apply this result to give simultaneous confidence intervals for all contrasts in the μ_i 's. In doing this last part a) define what a contrast is b) justify that the set of contrasts can be obtained by taking a linear combinations of a basis set consisting of r linear combinations of the μ'_i 's, being sure to justify exactly what r is.
 - (f) Now assume that all $n_i = n_1$. Argue that the distribution of

$$Q = \frac{Max_i(\bar{Y}_{i.} - \mu_i) - Min_i(\bar{Y}_{i.} - \mu_i)}{\hat{\sigma}/n_1}$$

has a distribution that does not depend on any unknown parameters (but will depend on d = n - Iand I.) Note: You do not have to find the density to do this.

- (g) Use the previous part to DERIVE simultaneous confidence intervals for all pairwise differences of the form $\mu_i \mu_k$. In writing out your answer you can use $q_{\alpha,d,I}$ to denote the value for which $P(Q \leq q_{\alpha,d,I}) = 1 \alpha$.
- (h) In the general linear model with $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with with $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $Cov(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}$ and \mathbf{X} being $n \times p$ of rank p, there are two ways to write out the F-statistic (which is the likelihood ratio test) for testing $H_0 : \mathbf{H}\boldsymbol{\beta} = \mathbf{h}$, where \mathbf{H} is $q \times p$ of rank q. One is using a general matrix form, the other is using the full-reduced model approach.
 - i. For this problem, suppose I = 2 and consider testing $H_0: \mu_1 = \mu_2$. Use each of the two methods to develop the F-test for this hypothesis (they will yield the same result). Give a final form that involves \bar{Y}_1 , \bar{Y}_2 , $\hat{\sigma}^2$ and the sample sizes n_1 and n_2 .
 - ii. Set-up how you would compute the power of the test in the previous part (for testing $\mu_1 = \mu_2$ specifically). You can leave your answer in the form of an integral with integrand $f(x; d_1, d_2, \lambda)$ = density of a non-central F-distribution with d_1 and d_2 degrees of freedom and non-centrality parameter λ . You do not need to write out the density involved but be sure to specify the limits of integration along with d_1 , d_2 and λ for this particular problem.