UNIVERSITY OF MASSACHUSETTS

Department of Mathematics and Statistics
ADVANCED EXAM - LINEAR MODELS
Friday, August 29, 2008
Work all problems. 75 points are required to pass.

- Read the questions carefully.
- Where is says "state ..." you can state the result being asked for without proof.

1. (30 PTS $)$ Let Y_{1} and Y_{2} be independent random variables, $\mathrm{E}\left(Y_{i}\right)=\mu+\alpha_{i}$ for $i=1,2$.
(a) Let $\psi=c_{1} \alpha_{1}+c_{2} \alpha_{2}$, where c_{1} and c_{2} are constants. Define what it means for ψ to be estimable and then show what condition c_{1} and c_{2} must satisfy for ψ to be estimable.
(b) Use the previous part to show that α_{2} is not estimable and then to decide which, if either, of $\alpha_{1}+\alpha_{2}$ and $\alpha_{1}-\alpha_{2}$ is estimable.
(c) With $\boldsymbol{\beta}=\left(\mu, \alpha_{1}, \alpha_{2}\right)^{\prime}$ and $\mathbf{Y}^{\prime}=\left(Y_{1}, Y_{2}\right)$, write $E(\mathbf{Y})$ as $\mathbf{X} \boldsymbol{\beta}$. Write out \mathbf{X}, which is 2×3, explicitly with numbers.
(d) Note that \mathbf{X} is not of full column rank (explain why!) and so the least squares estimate of $\boldsymbol{\beta}$ (which solves $\mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{\prime} \mathbf{Y}$) is not unique. In order to avoid dealing with the singular matrix $\mathbf{X}^{\prime} \mathbf{X}$ in computing a least squares estimator for $\boldsymbol{\beta}$ one can impose some side conditions (also called constraints) on linear combinations of β. What type of side conditions and how many are needed in this problem to force a unique solution to $\mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{\prime} \mathbf{Y}$? Justify why these side conditions force a unique solution. Note: Part d) is needed to go on with the problem. If you can't get it you can buy the answer (giving up 6 points) in order to proceed.
(e) Using the previous part, select a side condition (or conditions) and rewrite the reparameterized model as $E(\mathbf{Y})=\mathbf{Z} \boldsymbol{\gamma}$. Be sure to specify \mathbf{Z} (which will be 2×2 of rank 2) and $\boldsymbol{\gamma}$ explicitly.
(f) Now compute the least squares estimate, $\hat{\boldsymbol{\gamma}}$, of $\boldsymbol{\gamma}$, explicitly (inverting and multiplying out the matrices) in terms of Y_{1} and Y_{2}. Then write down a least squares estimate $\hat{\boldsymbol{\beta}}$ of $\boldsymbol{\beta}$.
(g) Write down the BLUE for $\alpha_{1}-\alpha_{2}$ explicitly in terms of Y_{1} and Y_{2}. Which theorem have you employed to guarantee your answer being the BLUE? State the content of the theorem.
2. (30 PTS) Consider the linear model

$$
\begin{equation*}
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{z} \phi+\boldsymbol{\epsilon} \tag{1}
\end{equation*}
$$

with $E(\boldsymbol{\epsilon})=\mathbf{0}$ and $\operatorname{Cov}(\boldsymbol{\epsilon})=\sigma^{2} \mathbf{I}$. \mathbf{X} is a known $n \times p$ matrix of rank $p<n, \mathbf{z}$ is a known $n \times 1$ vector and $\boldsymbol{\beta}(p \times 1), \phi$ (scalar) and σ^{2} (scalar) are unknown parameters.
(a) Suppose the $\mathbf{z} \phi$ terms are ignored and the model assuming $E(\mathbf{Y})=\mathbf{X} \boldsymbol{\beta}$ is fit; leading to $\hat{\boldsymbol{\beta}}=$ $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$, the ordinary least squares estimator using just \mathbf{X}. Let $r_{i}=Y_{i}-\hat{Y}_{i}$ denote the resulting ith residual (that is using $\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}$) and let \mathbf{r} be the n by 1 vector of residuals. Derive $E(\mathbf{r})$ and $\operatorname{Cov}(\mathbf{r})$ (assuming (1) holds).
(b) A plot of r_{i} versus z_{i} (the ith element of \mathbf{z}) is often suggested as a way to assess if the variable z_{i} should be in the model. Explain (using your expression for $E(\mathbf{r})$) why this plot is often useful and when it might encounter some problems. Assume that if z_{i} enters into the model it does so via $z_{i} \phi$.
(c) Consider a full least squares fit of the model in (1). Let $\mathbf{M}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$. Show that

$$
\begin{equation*}
\hat{\phi}=\frac{\mathbf{z}^{\prime}(\mathbf{I}-\mathbf{M}) \mathbf{Y}}{\mathbf{z}^{\prime}(\mathbf{I}-\mathbf{M}) \mathbf{z}} \tag{2}
\end{equation*}
$$

Do this by first rewriting (1) as $\mathbf{Y}=\mathbf{X} \boldsymbol{\delta}+(\mathbf{I}-\mathbf{M}) \mathbf{z} \phi+\boldsymbol{\epsilon}$ where $\boldsymbol{\delta}$ can involve both parameters and elements of \mathbf{X} and/or \mathbf{z}.
(d) A client says "well, if the plot of r_{i} versus z_{i} represents the influence of z_{i} after accounting for the other variables, is it the case that if I ran a simple linear regression of r_{i} on Z_{i} that the slope I get will be the estimate $\hat{\phi}$ in (2) from a full least squares fit of (1)?
Show that the answer to this question is no. Then show however that if we define $\mathbf{w}=(\mathbf{I}-\mathbf{M}) \mathbf{z}$ (this is $n \times 1$) and we regress r_{i} on w_{i} with NO intercept, then the estimated slope we obtain is exactly $\hat{\phi}$ in (2) from the full least squares fit. (This result suggests that we plot r_{i} versus w_{i} rather than just z_{i} as this plot matches up with the estimate of ϕ from the full least squares approach; this is known as an added variable plot.)
3. (40 PTS) Consider the one-factor fixed effects model: $Y_{i j}=\mu_{i}+\epsilon_{i j}, i=1$ to I and $j=1$ to n_{i}, where $\mu_{1}, \ldots \mu_{I}$, are fixed parameters (means) and the $\epsilon_{i j}$ are i.i.d. normal with mean 0 and variance σ^{2}.
(a) Write this out as a linear model, $\mathbf{Y}=\mathbf{X} \boldsymbol{\mu}+\boldsymbol{\epsilon}$, with $\boldsymbol{\mu}^{\prime}=\left(\mu_{1}, \ldots, \mu_{I}\right)$ and argue that the least squares estimator of $\boldsymbol{\mu}$ has $\widehat{\mu}_{i}=\bar{Y}_{i}=\sum_{j=1}^{n_{i}} Y_{i j} / n_{i}$. (You can just state the general form of the least squares estimator for a linear model and apply it here.)
(b) Show that $\widehat{\sigma}^{2}=\sum_{i}\left(n_{i}-1\right) S_{i}^{2} /(n-I)$ is an unbiased estimator of σ^{2}, where $S_{i}^{2}=\sum_{j=1}^{n_{i}}\left(Y_{i j}-\right.$ $\left.\bar{Y}_{i .}\right)^{2} /\left(n_{i}-1\right)$ and $n=\sum_{i=1}^{I} n_{i}$. (Do this without using the normality assumption.) You can utilize the computing formula $\sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}_{i .}\right)^{2}=\sum_{j=1}^{n_{i}} Y_{i j}^{2}-n_{i} \bar{Y}_{i .}^{2}$.
(c) Using just the observations from "group" i, collected in $\mathbf{Y}_{i}=\left(Y_{i 1}, \ldots, Y_{i n_{i}}\right)^{\prime}$, first write $\left(n_{i}-1\right) S_{i}^{2} / \sigma^{2}$ as a quadratic form in \mathbf{Y}_{i}. Then state a general theorem on when a quadratic form is distributed chi-square and show how that result applies here to give the distribution of $\left(n_{i}-1\right) S_{i}^{2} / \sigma^{2}$.
(d) Use the previous part and whatever else you need to provide the distribution of $(n-I) \hat{\sigma}^{2} / \sigma^{2}$. For the rest of the problem you can use, without proof, that $\hat{\sigma}^{2}$ is independent of $\hat{\mu}$.
(e) State generally, Scheffe's result for finding simultaneous confidence intervals for a collection of linear combinations of the coefficients in the general linear model. Then apply this result to give simultaneous confidence intervals for all contrasts in the μ_{i} 's. In doing this last part a) define what a contrast is b) justify that the set of contrasts can be obtained by taking a linear combinations of a basis set consisting of r linear combinations of the μ_{i}^{\prime} s, being sure to justify exactly what r is.
(f) Now assume that all $n_{i}=n_{1}$. Argue that the the distribution of

$$
Q=\frac{\operatorname{Max}_{i}\left(\bar{Y}_{i .}-\mu_{i}\right)-\operatorname{Min}_{i}\left(\bar{Y}_{i .}-\mu_{i}\right)}{\hat{\sigma} / n_{1}}
$$

has a distribution that does not depend on any unknown parameters (but will depend on $d=n-I$ and I.) Note: You do not have to find the density to do this.
(g) Use the previous part to DERIVE simultaneous confidence intervals for all pairwise differences of the form $\mu_{i}-\mu_{k}$. In writing out your answer you can use $q_{\alpha, d, I}$ to denote the value for which $P\left(Q \leq q_{\alpha, d, I}\right)=1-\alpha$.
(h) In the general linear model with $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ with with $E(\boldsymbol{\epsilon})=\mathbf{0}$ and $\operatorname{Cov}(\boldsymbol{\epsilon})=\sigma^{2} \mathbf{I}$ and \mathbf{X} being $n \times p$ of rank p, there are two ways to write out the F-statistic (which is the likelihood ratio test) for testing $H_{0}: \mathbf{H} \boldsymbol{\beta}=\mathbf{h}$, where \mathbf{H} is $q \times p$ of rank q. One is using a general matrix form, the other is using the full-reduced model approach.
i. For this problem, suppose $I=2$ and consider testing $H_{0}: \mu_{1}=\mu_{2}$. Use each of the two methods to develop the F-test for this hypothesis (they will yield the same result). Give a final form that involves $\bar{Y}_{1 .}, \bar{Y}_{2 .}, \widehat{\sigma}^{2}$ and the sample sizes n_{1} and n_{2}.
ii. Set-up how you would compute the power of the test in the previous part (for testing $\mu_{1}=\mu_{2}$ specifically). You can leave your answer in the form of an integral with integrand $f\left(x ; d_{1}, d_{2}, \lambda\right)$ $=$ density of a non-central F-distribution with d_{1} and d_{2} degrees of freedom and non-centrality parameter λ. You do not need to write out the density involved but be sure to specify the limits of integration along with d_{1}, d_{2} and λ for this particular problem.

