DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS BASIC EXAM - STATISTICS THURSDAY, JANUARY 17, 2019

Note: There are four problems, each 20 points. Sixty points are needed to pass at the Master's level and seventy-five at the Ph.D. level.

1. A random variable X is in the one parameter exponential family if its pdf has form

$$f(x;\eta) = h(x) \exp\left\{\eta t(x) - a(\eta)\right\}.$$

- a. Show that $a(\eta) = \log \int h(x) \exp \{\eta t(x)\} dx$.
- b. Show that $\frac{\partial}{\partial \eta}a(\eta) = E\{t(X)\}$. The function t() is the sufficient statistic.
- c. Suppose you observe x_1, \ldots, x_n , i.i.d. observations of X. Find the MLE of η .
- d. Give an example a distribution that is in the one parameter exponential family, and show that its pdf has the form above.
- e. Give an example of a one parameter distribution that is not in the exponential family, and show that it isn't.

2. Let X_1, X_2, \dots, X_n be an i.i.d. sample from an Exponential(θ) distribution, so that the probability distribution function for each X_i is given by

$$f(x; \theta) = \theta \exp(-x\theta); x \ge 0, \theta > 0.$$

- a. Show that the likelihood ratio statistic for comparing θ_0 and θ_1 is monotone in the sufficient statistic.
- b. Find a UMP test of $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. Justify why the proposed test is UMP.
- c. You may use the following fact: if X_i are i.i.d. Exponential(λ) then $2\lambda \sum_{i=1}^n X_i$ is Chi-squared(df=2n). Use that fact to define a 1- α confidence interval for λ .
- 3. Let X_1, X_2, \dots, X_n be an i.i.d. sample from a Bernoulli(p) distribution.
 - a. Show that the MLE of p^2 is $T_n = \left(\frac{\sum_{i=1}^n X_i}{n}\right)^2$. Show that this is a biased estimate of p^2 .
 - b. For each $i = 1, 2, \ldots, n$, define

$$T_n^{(i)} = \left(\frac{\sum_{j \neq i} X_j}{n}\right)^2$$

and set

$$J_n = nT_n - \frac{n-1}{n} \sum_{i=1}^n T_n^{(i)}.$$

Show that J_n is an unbiased estimator of p^2 .

c. Show that J_n is the best unbiased estimator of p^2 . You may use without proof that for the binomial family, $\sum_i X_i$ is a complete statistic.

4. Let X_1, \ldots, X_n be a random sample from a uniform distribution with probability density function

$$f(x; \alpha) = \frac{1}{1-\alpha}, \alpha \le x \le 1 \text{ and } 0 \le \alpha \le 1.$$

- a. Find the MLE for α and show that it's an MLE.
- b. The kth order statistic of the sample has pdf

$$\frac{n!}{(k-1)!(n-k)!}F(x;\alpha)^{k-1}\left\{1-F(x;\alpha)\right\}^{n-k}f(x;\alpha)$$

where $F(x; \alpha)$ is the CDF. Is the MLE of α biased or unbiased?

- c. What is the MSE of the MLE?
- d. Find a method of moments estimator for α .
- e. Briefly describe how you would choose between those two estimators.