DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS AMHERST
 BASIC NUMERIC ANALYSIS EXAM
 JANUARY 2019

Do five of the following problems. All problems carry equal weight.
Passing level:
Masters: 60% with at least two substantially correct.
PhD: 75% with at least three substantially correct.

1. For the iterative scheme $x_{n+1}=g\left(x_{n}\right)$,
(a) Show that $g^{\prime}(s)=\ldots=g^{p-1}(s)=0$ guarantees convergence to the fixed point s of order p.
(b) Show that with $g(x)=\frac{x\left(x^{2}+6\right)}{3 x^{2}+2}$, the scheme can be used for computing $\sqrt{2}$.
(c) Show that the scheme is third order accurate, i.e.,

$$
\left|x_{n+1}-\sqrt{2}\right| \leq C\left|x_{n}-\sqrt{2}\right|^{3}
$$

2. Consider $f(x)=2-x+x^{2}-x^{3}$. Let $p_{2}(x)$ denote the second order polynomial interpolation of $f(x)$ at $\{-1,0,1\}$.
(a) Find $p_{2}(x)$.
(b) Compute the L^{∞} error of $p_{2}(x)$ on the domain $[-1,1]$.
3. Determine whether there are unique values of a, b, c that give the minimum of the following problem. If yes, find such a, b, c

$$
\min _{a, b, c} \int_{-1}^{1}\left[\left(x^{3}+1\right)-\left(a+b x+c x^{2}\right)\right]^{2} d x .
$$

Note that we are approximating $f(x)=\left(x^{3}+1\right)$ with polynomials of the form $\left(a+b x+c x^{2}\right)$.
Legendre polynomials are orthogonal on $[-1,1]$ with weight function $\omega(x)=1$:

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
(n+1) P_{n+1}(x) & =(2 n+1) x P_{n}(x)-n P_{n-1}(x), \quad n=1,2, \ldots
\end{aligned}
$$

with $\left(P_{n}, P_{n}\right)=\frac{2}{2 n+1}$.
4. (a) Derive a two-point integration formula to approximate

$$
\int_{-1}^{1} f(x)\left(1+x^{2}\right) \mathrm{d} x
$$

that is exact when $f(x)$ is a polynomial of degree ≤ 3.
(b) Compute the error in this approximation when $f(x)=x^{4}$.
5. Consider the numerical solution of $y^{\prime}=f(y)$ with a scheme of the form

$$
y_{n+1}=y_{n}+a h f\left(y_{n}+b h f\left(y_{n}\right)\right)
$$

(a) Find the choice of a, b that lead to the highest order of accuracy. What is the highest order?
(b) What is the region of absolute stability? (Only need to find the equation for $z=h \lambda$)
6. Let

$$
A=\left[\begin{array}{cc}
10^{-20} & 2 \\
1 & 3
\end{array}\right]
$$

(a) Compute the LU decomposition of A in exact arithmetic.
(b) Compute the LU decomposition in finite precision floating-point arithmetic, assuming 15 decimal digits of accuracy. (Namely, at this precision $1 \oplus 10^{-16}=1$, but $10^{-16} \neq 0$.)
(c) Compare the two results.
7. Consider:

$$
x^{k+1}=x^{k}+\alpha\left(b-A x^{k}\right)
$$

(a) Start by rewriting this in the standard form: $x^{k+1}=M x^{k}+c$ (i.e., find M and c).
(b) Assume that you know the minimum and maximum eigenvalues of $A, \lambda_{\min }$ and $\lambda_{\max }$ such that every other eigenvalue λ_{i} of A satisfies: $0<\lambda_{\min } \leq \lambda_{i} \leq \lambda_{\max }$. Find the conditions for the convergence of the iterative scheme above (you should find two conditions) and express them as a single condition (an inequality for the interval where α should lie).
(c) Among those α 's for which the scheme converges, find the optimal α (Hint: try to minimize the spectral radius of the iteration matrix).
(d) Find also the optimal spectral radius.

