NAME:

Advanced Probability Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Tuesday, August 28, 2018

Instructions

- 1. This exam consists of six (6) problems (each of equal weight 20). You need to solve 5 out of 6 problems and your grade will be evaluated using the five problems you choose (or the best five out of six problems if you decide to solve all the problems).
- 2. In order to pass this exam, it is enough that you solve essentially correctly at least three (3) problems and that you have an overall score of at least 65%.
- 3. State explicitly all results that you use in your proofs and verify that these results apply.
- 4. Please write your work and answers <u>clearly</u> in the blank space under each question.
- 5. The last page is empty and can be used if you need more space.

- 1. (a) You flip a fair coin. If the coin lands on "Tail" you lose \$1 while if it lands on "Heads" you generate a random number U (i.e., a uniform random variable on [0,1]) and you gain is equal to \$2U. If Y denotes your gain (in \$) find the distribution function $F_Y(x)$ of Y.
 - (b) Let X be the random variable with distribution function

$$F_X(x) = \begin{cases} 0 & x < 1\\ \frac{1}{2}\sqrt{x/2} & 1 \le x < 2\\ 1 & 2 \le x \end{cases}.$$

Compute $P(\frac{3}{2} < x \le 2)$ and E[X].

2. Let $\{X_n\}$, $n=1,2,3,\cdots$, be a sequence of independent and identically distributed random variable, each of them exponentially distributed with parameter 1, i.e.,

$$P(X_n > x) = e^{-x}, \quad x > 0.$$

(a) For any $\alpha > 0$ compute

$$P\left(\frac{X_n}{\log n} > \alpha \text{ i.o.}\right).$$

(b) Deduce from (a) that

$$\limsup_{n\to\infty}\frac{X_n}{\log n}=1\ \ \text{almost surely}\ .$$

- 3. Let $\{X_n\}$, $n=1,2,3,\cdots$, and X be random variables on a probability space (Ω,\mathcal{F},P) .
 - (a) Give precise definitions of the following convergence concepts, as $n \to \infty$:
 - (i) $X_n \to X$ almost surely; (ii) $X_n \to X$ in probability; (iii) $X_n \to X$ in distribution. (iv) $X_n \to X$ in L^2 .
 - (b) Prove that if X_n converges to X in L^2 then X_n converges to X in probability, as $n \to \infty$.
 - (c) Give an example showing that almost sure convergence does not imply convergence in L_2 .

- 4. Let $\{X_n\}$, $n = 0, 1, 2, 3 \cdots$, be a stochastic process taking value in a countable state space S.
 - (a) Give the definition of " X_n is a Markov process".
 - (b) Show that X_n is a Markov process if and only if the future and the past are conditionally independent given the present, that is, if and only if we have

$$P(X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_{n+1} = i_{n+1} \dots X_{n+k} = i_{n+k} \mid X_n = i_n)$$

$$= P(X_0 = i_0, \dots, X_{n-1} = i_{n-1} \mid X_n = i_n) P(X_{n+1} = i_{n+1} \dots X_{n+k} = i_{n+k} \mid X_n = i_n)$$

for any n and k and any states $i_0, \dots i_{n+k}$.

(c) Suppose $S=\{1,2,3,4,5,6\}$ and X_n is a Markov chain with state space S. Is it true or not that

$$P(X_2 = 6 \mid X_1 \in \{3, 4\}, X_0 = 2) = P(X_2 = 6 \mid X_1 \in \{3, 4\})?$$

You need to justify your answer.

- 5. Cars arrive at a gas station which consists of a single pump according to a Poisson process with rate λ . A car can enter the station only if fewer than four cars are present. The amount of time to serve a car is exponentially distributed with expected service time $1/\mu$.
 - (a) Define a continuous Markov chain and specify its transition rates (its infinitesimal generator) and compute its stationary distribution.
 - (b) What is the long-run average number of cars in the station?
 - (c) What is the long-run fraction of time the pump is occupied?
 - (d) What is the long-run fraction of cars that cannot enter the station?

6. Consider the following algorithm to compute the number e. At the j^{th} step of the algorithm, generate random numbers U_1, U_2, \cdots until the descending order is broker, i.e. set

$$N = \inf\{n \ge 1, U_1 > U_2 > U_3 > \dots > U_{n-1} < U_n\}$$

If N is even then set $Y_j = 1$ otherwise set $Y_j = 0$.

Show that

$$\lim_{k\to\infty}\frac{Y_1+Y_2+\cdots Y_k}{k}=1-e^{-1}\quad \text{ almost surely }$$

Hint: Compute first P(N > n).