DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS
 BASIC QUALIFYING EXAM - APPLIED MATHEMATICS

August, 2018

Do five of the following problems. All problems carry equal weight. Passing level: 60% with at least two substantially complete solutions.

1) [20 points] (a) Find a harmonic function $u(r, \theta)$ inside a wedge defined by the three sides: $\theta=0, \theta=\beta$ and $r=a$, which satisfies the boundary conditions

$$
u(r, \theta=0)=0, \quad u(r, \theta=\beta)=0, \quad u(r=a, \theta)=g(\theta)
$$

(b) Apply this general solution to the special case of a semi-disk with $\beta=\pi / 4, a=1$ and $g(\theta)=15 \sin (4 \theta)-2 \sin (16 \theta)$, to find $u(r, \theta)$ in this case.
2) [20 points] (a) For each of the following equations, state the order and whether is linear or nonlinear. Explain/justify your answer.

- $u_{t}-2 u_{x x}=x^{2}$
- $u_{t}-2 u_{x x}+x u=0$
- $u_{t}-2 u_{x x}+u^{4}=0$
- $u_{t}-u_{x x t}+u u_{x}=0$
- $i u_{t}-u_{x x}+\frac{u}{3 x}=0$
- $u_{y}+2 e^{-y} u_{x}=0$
- $u_{t}-u_{x x x x}+\sqrt{1+u^{2}}=0$
(b) Consider the PDE

$$
u_{t}+u^{r} u_{x}=0
$$

where $r>0$ is an integer constant. The initial condition is given $u(x, 0)=\phi(x)$. Knowing only $\phi(x)$ (and that it possesses a spatially decreasing part), find an expression for the minimal time at which the solution will form a shock.
3) [20 points] Investigate the following "rabbit vs. sheep" problem:

$$
\begin{gathered}
\dot{x}=x(3-2 x-2 y), \\
\dot{y}=y(2-x-y)
\end{gathered}
$$

(a) Identify all the fixed points and investigate their stability.
(b) Draw the nullclines and sketch the phase portrait.
(c) Indicate the basins of attraction of any stable fixed points.
4) [20 points] Consider the dynamical system as a function of its parameter μ :

$$
\begin{gathered}
\dot{x}=\mu x+y+\sin (x) \\
\dot{y}=x-y
\end{gathered}
$$

1. Illustrate that the system has a bifurcation at $\mu=-2$ and identify its nature.
2. Does the system have any additional bifurcations ? Can you sketch a full bifurcation diagram of x as a function of μ ?
5) [20 points] Let $u_{1}(x, t)$ and $u_{2}(x, t)$ be solutions to the heat equation

$$
u_{t}=k u_{x x}, \quad \text { in } \quad R=[0, L] \times[0, \infty),
$$

with initial and boundary conditions:

$$
u_{1}(x, 0)=f_{1}(x), u_{1}(0, t)=g_{1}(x), u_{1}(L, t)=h_{1}(t),
$$

and

$$
u_{2}(x, 0)=f_{2}(x), u_{2}(0, t)=g_{2}(x), u_{2}(L, t)=h_{2}(t),
$$

respectively.

Assume that $f_{1} \leq f_{2}, g_{1} \leq g_{2}$ and $h_{1} \leq h_{2}$. Prove that then $u_{1} \leq u_{2}$ in the region $R=[0, L] \times[0, \infty)$.
6) [20 points] (a) Let $g \in C^{2}([0,1])$ be a given function and consider the equation:

$$
\begin{equation*}
u_{t}-u_{x x}=0, \quad 0<x<1, t>0 \tag{1}
\end{equation*}
$$

with initial and boundary conditions

$$
\begin{gathered}
u(x, 0)=g(x), \quad 0<x<1 \\
u(0, t)=0 \quad \text { and } \quad u(1, t)=0
\end{gathered}
$$

respectively. Use the method of separation of variables to find the general solution $u=u(x, t)$ as a Fourier series. Give the form of the coefficients $A_{n}, n \geq 1$ in the series in terms of g.
(b) What is the $\lim _{t \rightarrow \infty} u(x, t)$ equal to? Justify your answer (you may formally take the limit inside the series).
7) [20 points] (a) Find real numbers a, b so that that $V(x, y)=$ $a x^{2}+b y^{2}$ is a strict Liapunov function for the origin of the system

$$
\dot{x}=y-x^{3}, \quad \dot{y}=-x-y^{3}
$$

(b) Explain intuitively why part (a) implies that the system has no (non-constant) periodic orbits.

