UNIVERSITY OF MASSACHUSETTS
 DEPARTMENT OF MATHEMATICS AND STATISTICS
 ADVANCED EXAM - STATISTICS (II)

January 18, 2017

Work all problems and show all work. Explain your answers. State the theorems used whenever possible. 70 points are required to pass.

1. Let X_{1}, \ldots, X_{n} be an independent and identically distributed (i.i.d) random sample from an exponential distribution with mean θ and k-th moment $E X^{k}=k!\theta^{k}$. Define

$$
S_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\left(\bar{X}_{n}\right)^{2}=\bar{Y}_{n}-\left(\bar{X}_{n}\right)^{2} .
$$

where $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, Y_{i}=X_{i}^{2}$ and $\bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$
(a) (6 points) Derive the joint asymptotic distribution of \bar{X}_{n} and \bar{Y}_{n}.
(b) (7 points) Derive the joint asymptotic distribution of \bar{X}_{n} and S_{n}^{2}.
(c) (7 points) Define the coefficient of variation to be

$$
C V_{n}=\frac{\sqrt{S_{n}^{2}}}{\bar{X}_{n}}
$$

Show that $\sqrt{n}\left(C V_{n}-1\right) \xrightarrow{d} Z$ where $Z \sim N(0,1)$ (i.e., $\sqrt{n}\left(C V_{n}-1\right)$ converges in distribution to Z).
2. Suppose that X_{1}, \ldots, X_{n} is an i.i.d random sample from a distribution with the density function $f_{\theta}(x)=\theta e^{-\theta x}, x>0$ and $\theta>0$. Note that $E\left(X_{i}\right)=1 / \theta$ and $\operatorname{Var}\left(X_{i}\right)=1 / \theta^{2}$.
(a) (6 points) Show that the likelihood equation of θ has a unique solution, denoted as $\hat{\theta}_{n}$, and this solution maximizes the likelihood function. Also check the regularity conditions necessary for consistency of $\hat{\theta}_{n}$.
(b) (7 points) Show that $\hat{\theta}_{n}$ is consistent and asymptotically efficient.

Consider the prior distribution for the parameter θ as an exponential distribution $\pi(\theta)=e^{-\theta}$ where $\theta>0$.
(c) (6 points) Derive the Bayesian estimator (i.e., the posterior mean of θ), denoted as $\hat{\hat{\theta}}_{n}$.
(d) (6 points) Derive the asymptotic distribution of $\hat{\hat{\theta}}_{n}$.
3. Suppose that the random variables $Y_{i}=\alpha+\beta x_{i}+\epsilon_{i}$ for $i=1, \ldots, n$, where x_{1}, \ldots, x_{n} are known constants and $\epsilon_{1}, \ldots, \epsilon_{n}$ are i.i.d random variables with mean 0 and variance $\sigma^{2}<\infty$. The least-squares estimator of β is

$$
\hat{\beta}_{n}=\sum_{j=1}^{n} Y_{j}\left(x_{j}-\bar{x}_{n}\right) / \sum_{j=1}^{n}\left(x_{j}-\bar{x}_{n}\right)^{2}=\beta+\sum_{j=1}^{n} \epsilon_{j}\left(x_{j}-\bar{x}_{n}\right) / \sum_{j=1}^{n}\left(x_{j}-\bar{x}_{n}\right)^{2}
$$

where $\bar{x}_{n}=\frac{1}{n} \sum_{j=1}^{n} x_{j}$.
(a) (6 points) Show that $\hat{\beta}_{n}$ is a consistent estimator of β. Under what condition on x_{1}, \ldots, x_{n}, is $\hat{\beta}_{n}$ a consistent estimator of β ?
(b) (14 points) Assume that

$$
\gamma_{n}^{2} \equiv \frac{\max _{1 \leq j \leq n}\left(x_{j}-\bar{x}_{n}\right)^{2}}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}_{n}\right)^{2}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Prove that

$$
\sqrt{n} s_{n}\left(\hat{\beta}_{n}-\beta\right) \xrightarrow{d} N\left(0, \sigma^{2}\right),
$$

where $s_{n}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}_{n}\right)^{2}$. [Hint] Use the Lindeberg-Feller Theorem (extension of the Central Limit Theorem to the independent nonidentically distributed case) by constructing a triangular array of random variables and showing that the Lindeberg condition is satisfied.
4. Suppose X_{1}, \ldots, X_{n} are i.i.d random variables with the distribution function $F(x)$. Let $\hat{F}_{n}(x)$ denote the empirical distribution function $\hat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I\left\{X_{i} \leq x\right\}$.
(a) (5 points) For every value of x, show that $\hat{F}_{n}(x)$ is a consistent estimator for $F(x)$.
(b) (5 points) For every value of x, find the asymptotic distribution of $\hat{F}_{n}(x)$.
(c) (5 points) Let X_{1}, \ldots, X_{n} be an i.i.d random sample from a distribution with the following density:

$$
f(x \mid \theta)=\frac{1}{\pi\left[1+(x-\theta)^{2}\right]}
$$

where n is odd, θ is the median and $E(X)$ is undefined. Let $\tilde{\theta}_{n}$ denote the sample median. Suppose we wish to estimate $g(F)=E_{F}\left(\tilde{\theta}_{n}\right)<\infty$. We use a bootstrap scheme in which we draw B random samples of size n from $\hat{F}_{n}(x)$, and let M_{b} be the sample median of the b-th sample, $b=1, \ldots, B$. Describe (with justification) what happens to $\bar{M}_{B}=\frac{1}{B} \sum_{b=1}^{B} M_{b}$ when n is fixed but with $B \rightarrow \infty$.
5. Let P_{0}, P_{1}, and P_{2} be the space of possible probability distributions assigning to the integers $1,2, \ldots 6$ the following probabilities:

	1	2	3	4	5	6
P_{0}	.03	.02	.02	.01	0	.92
P_{1}	.06	.05	.08	.02	.01	.78
P_{2}	.09	.05	.12	0	.02	.72

Consider the null hypothesis $H_{0}: P=P_{0}$. Based on a single observation $X \in\{1,2, \ldots 6\}$:
(a) (6 points) Is there a uniformly most powerful test against the alternatives P_{1} and P_{2} at level $\alpha=.01$? If so, specify the rejection region of that test.
(b) (6 points) Is there a uniformly most powerful test against the alternatives P_{1} and P_{2} at level $\alpha=.05$? If so, specify the rejection region of that test.
(c) (8 points) Recall that one way to construct a confidence set is to invert a hypothesis test: (i.e. allowing the confidence set to include all members of the parameter space for which the designated test would not reject.) Suppose $X=4$ is observed. Give a 99% confidence set, and (briefly) justify your choice.

