COMPLEX ANALYSIS BASIC EXAM UNIVERSITY OF MASSACHUSETTS, AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS JANUARY 2017

- Each problem is worth 10 points.
- Passing Standard: Do 8 of the following 10 problems, and
- Master's level: 45 points with three questions essentially complete
- Ph. D. level: 55 points with four questions essentially complete

1. Show that

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{e^{x}+1}=\frac{\pi}{\sin \pi a} \quad \text { for } 0<a<1
$$

Show the contour and prove all estimates you use.
2. Let $f(z)$ be analytic inside and on the circle $C:|z|=R>0$. Suppose $|f(z)|<M$ along C.
(a) For $n \geq 1$, give the precise statement of the Cauchy inequality for the n-th derivative $f^{(n)}(x)$ of f.
(b) Given examples to show that Cauchy inequality is the best possible, i.e. the estimate growth of $f^{(n)}(x)$ cannot be improved for all functions analytic inside and on C. Justify your reasoning.
3. Let f be a holomorphic function on the open unit disk D. Suppose f extends continuously to the closed unit disk \bar{D}, and supppose f vanishes on the semicircle $z=e^{i \theta}$ where $0 \leq \theta \leq \pi$. Show that $f=0$ on \bar{D}. Justify your reasoning.
4. Recall that a function $g(z)$ is said to be have a pole of order $m \geq 0$ at infinity if $g(1 / z)$ has a pole of order m at the origin. Find all meromorphic functions $f(z)$ on the extended complex plane that have a pole of order m at the origin, a pole order n at infinty, and nowhere else. Justify your reasoning.
5. Determine all singularities of the function

$$
f(z)=\frac{(z-1)^{2}(z+3)}{1-\sin (\pi z / 2)}
$$

and determine for each one its type.
6. Find a conformal mapping φ that takes the interior of the unit disk to the open set $W:=\{|w-1|<1\}$, such that $\varphi(0)=1 / 2$ and $\varphi(1)=0$. Is φ uniquely determined? Justify your reasoning.

Note: Of course the point 1 is not in the interior of the unit disk.
7. Let U be a. non-empty open set of the complex plane, For $z \in U$, write $z=x+i y$. Let $f(z)=u(x, y)+i v(x, y)$ be a function defined on U such that its real part $u(x, y)$ and it imaginary part $v(x, y)$ are both real analytic functions in the two real variables x, y. Define

$$
\frac{\partial f}{\partial z}:=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right), \quad \frac{\partial f}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) .
$$

Show that f is analytic if and only if $\frac{\partial f}{\partial \bar{z}}=0$, in which case show that $f^{\prime}=\frac{\partial f}{\partial z}$. Justify your reasoning.

Note: This is a standrad result; please prove it from first principles.
8. Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be an analytic function. Let ω_{1}, ω_{2} be complex numbers which are linearly independent over R. Suppose

$$
f(z)=f\left(z+\omega_{1}\right)=f\left(z+\omega_{2}\right)
$$

for all $z \in \mathbf{C}$. Show that f is constant. Justify your reasoning.
Note: This is a standrad property about elliptic functions. Do not cite this theorem; instead solve this problem using basic results about complex analytic functions.
9. Let U be a non-empty, connected open subset of \mathbf{C}. Fix a point $\alpha \in U$, and let α_{n} be a sequence of points in $U \backslash\{\alpha\}$ that converges to α. Let f, g be holomorphic functions on U that do no vanish at any point of U. Show that if

$$
\frac{f^{\prime}\left(\alpha_{n}\right)}{f\left(\alpha_{n}\right)}=\frac{g^{\prime}\left(\alpha_{n}\right)}{g\left(\alpha_{n}\right)}
$$

for every α_{n}, then g is a multiple of f. Justify your reasoning.
10. Fix $\alpha \in \mathbf{C}$, and set $U_{\alpha}(R):=\{z \in \mathbf{C}: 0<|z-\alpha|<R\}$. For any analytic function $f: U_{\alpha}(R) \rightarrow \mathbf{C}$, show that the following conditions are equivalent:

- f has a pole of order $k \geq 0$ at α;
- there exists an open disk D_{α} centered at α, and an anlytic function h on D_{α}, such that $f(z)=h(z) /(z-\alpha)^{k}$ for all $z \in D_{\alpha} \cap U_{\alpha}$;
- there exists positive real numbers M_{1}, M_{2} such that for all z in a punctured open neighborhood of α, we have $M_{1}|z-\alpha|^{-k} \leq|f(z)| \leq M_{2}|z-\alpha|^{k}$.

