Department of Mathematics and Statistics

University of Massachusetts Basic Exam: Topology Tuesday, January 17, 2017

Answer five of the seven questions. Indicate clearly which five questions you want graded. Justify your answers.

Passing standard: For Master's level, 60% with two questions essentially complete. For Ph.D. level, 75% with three questions essentially complete.

- 1. Show that for any subset $A \subset \mathbb{R}^n$, the quotient space \mathbb{R}^n/A obtained by identifying A to a point is Hausdorff if and only if A is closed.
- 2. Let $A \subset \mathbb{R}^2$ be countable. Prove that $\mathbb{R}^2 \setminus A$ is connected.
- 3. Let \mathbb{R}^{ω} be the set of all real-valued sequences, and let $B \subset \mathbb{R}^{\omega}$ be the subset of all bounded sequences.
 - (a) If \mathbb{R}^{ω} is given the product topology, is B open, closed, both or neither?
 - (b) Answer the same question if \mathbb{R}^{ω} is given the box topology.
- 4. Let $C_1 \supset C_2 \supset C_3 \supset \ldots$ be a nested sequence of nonempty compact subsets of a Hausdorff space X. Show that the intersection $\bigcap_i C_i$ is nonempty and compact.
- 5. For any n > 0, let \sim be the equivalence relation on \mathbb{R}^n given by $x \sim y$ if and only if there exists t > 0 so that x = ty. Let $X = \mathbb{R}^n / \sim$ be the associated quotient space, and let $q: \mathbb{R}^n \to \mathbb{R}^n / \sim$ be the quotient map.
 - (a) Show that X is not Hausdorff.
 - (b) Show that $X \setminus q(0)$ is homeomorphic to S^{n-1} .
 - (c) Is the map

$$f: \mathbb{R}^n \to \mathbb{R} \times X, \ f(x) = (|x|, g(x))$$

an embedding, i.e. a homeomorphism onto its image? Prove your answer.

- 6. Compute the fundamental groups of $\mathbb{R}^3 \setminus (C \cup L)$ and of $\mathbb{R}^3 \setminus C$, where C is the circle $x^2 + y^2 = 1$ in the plane z = 0 and L is the line x = y = 0.
- 7. Show that the composition $g \circ f$ of any two continuous maps $f: S^1 \to S^2$ and $g: S^2 \to S^1$ is homotopic to a constant map. Is the same true if S^2 is replaced by the torus $T^2 = S^1 \times S^1$? Explain your answer.