University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry For August, 2016

Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.

1. Let $E \rightarrow R P^{2}$ be the tautological line bundle (i.e., $\forall x \in R P^{2}$, the fiber E_{x} is the 1 -dimensional subspace of \mathbb{R}^{3} represented by $\left.x\right)$ and let $E^{\prime} \rightarrow R P^{2}$ be the rank 2 bundle whose fiber at $x \in R P^{2}$ is the 2-dimensional subspace of \mathbb{R}^{3} that is orthogonal to the line represented by x. Show that $E \oplus E^{\prime} \rightarrow R P^{2}$ is isomorphic to the product bundle $R P^{2} \times \mathbb{R}^{3}$ as smooth vector bundles.
2. Let $E \rightarrow S^{1}$ be the nontrivial rank 1 real vector bundle over the circle, e.g., $E=\mathbb{R} \times \mathbb{R} /\{(x, y) \sim(x+1,-y)\}$, and let M be the set defined by

$$
M:=\sqcup_{x \in S^{1}} P\left(E_{x} \oplus \mathbb{R}\right),
$$

where $P\left(E_{x} \oplus \mathbb{R}\right)$ is the space of 1-dimensional subspaces of the 2-dimensional vector space $E_{x} \oplus \mathbb{R}$.
(a) Show that M is a 2-dimensional smooth manifold.
(b) Determine whether M is orientable and explain why.
3. Let M be the smooth 3-manifold obtained by identifying $\{0\} \times S^{2}$ and $\{1\} \times S^{2}$ in $[0,1] \times S^{2}$ via the map $(0, x) \mapsto(1,-x)$ for any $x \in S^{2} \subset \mathbb{R}^{3}$. Compute the de Rham cohomology groups of M.
4. Let (M, g) be a 2 -dimensional Riemannian manifold, and let ∇ be the LeviCivita connection. For any point $x \in M$, define

$$
K(x) \equiv \frac{\langle R(X, Y) Y, X\rangle}{\sqrt{|X|^{2}|Y|^{2}-\langle X, Y\rangle^{2}}}
$$

where $X, Y \in T_{x} M$ is a pair of linearly independent vectors. (Here $R(X, Y) Z \equiv$ $\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$ is the curvature endomorphism.) Show that
(1) $K(x)$ depends only on x (i.e., independent of the choice of X, Y).
(2) If $K \equiv 0$ on M, then g is locally isometric to the Euclidean metric.
5. Let $\pi: T^{*} M \rightarrow M$ be the cotangent bundle of the smooth manifold M. We define a 1 -form τ on $T^{*} M$ as follows: for any $p \in M, v \in T_{p}^{*} M$, the value $\tau(p, v) \in T_{(p, v)}^{*}\left(T^{*} M\right)$ at (p, v) is given by $\pi^{*}(v)$, where $\pi^{*}: T_{p}^{*} M \rightarrow$ $T_{(p, v)}^{*}\left(T^{*} M\right)$ is the dual of $\pi_{*}: T_{(p, v)}\left(T^{*} M\right) \rightarrow T_{p} M$. Show that τ is a smooth 1form and $\omega=-d \tau$ is a symplectic structure on $T^{*} M$. (A symplectic structure by definition is a closed, non-degenerate 2 -form.)
6. Let $G \subset G L(2, \mathbb{R})$ be the set of all 2×2 matrices A such that $A^{t} Q A=Q$, where Q is the diagonal matrix with entries 1 and -1 .
(a) Show that G is a Lie group, and determine its Lie algebra and calculate its dimension.
(b) How many components does G have?
(c) Give an explicit parametrization of the identity component of G via the exponential map.
7. Let (S, g) be a parameterized Riemannian surface with local coordinates (u, v). We say (S, g) is diagonal if the metric is a diagonal matrix in these coordinates, that is $g_{12}=g_{21}=0$ for all u, v.
(a) Compute the Christoffel symbols $\Gamma_{i j}^{k}$ in these coordinates.
(b) Write down the geodesic equations in these coordinates.
(c) Show that the isometrically embedded surface

$$
\{(u \cos v, u \sin v, u) / \sqrt{2} \mid u>0,0 \leq v<2 \pi\} \subset \mathbb{R}^{3}
$$

is diagonal, and that

$$
u=A \sec (v / \sqrt{2}+B)
$$

is a geodesic, where A, B are constants.
8. Let $X, Y \in \mathcal{X}\left(\mathbb{R}^{3}\right)$ be defined by

$$
X=y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}, \quad Y=z \frac{\partial}{\partial y}+y \frac{\partial}{\partial z} .
$$

(a) Find the maximal subset U of \mathbb{R}^{3} on which X, Y determine a 2-dimensional distribution Δ.
(b) Show that Δ is integrable on U.
(c) Describe the 2-dimensional integral manifold of Δ through the point $(1,1,1)$.

