DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST MASTER'S OPTION EXAM - APPLIED MATH September 2015

Do 5 of the following questions. Each question carries the same weight. Passing level is 60% and at least two questions substantially correct.

1. [20 points] A simplistic model of a fishery reads

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)-H
$$

where H represents the effects of fishing.
(a) Show that the model can be written in dimensionless form as:

$$
\frac{d x}{d \tau}=x(1-x)-h
$$

for suitably defined dimensionless x, τ and h.
(b) Show that a bifurcation occurs at a certain value h_{c} and classify this bifurcation.
(c) Plot the vector field for different values of h.
(d) Discuss the long term behavior of the fish population for $h<h_{c}$ and for $h>h_{c}$, giving some relevant biological interpretation.
2. [20 points] Consider the rabbit-sheep problem for $x>0$ and $y>0$:

$$
\begin{gathered}
\dot{x}=x(5-x-2 y) \\
\dot{y}=y(4-x-y)
\end{gathered}
$$

(a) Find the fixed points.
(b) Classify their stability and sketch the phase plane.
(c) Explain why there can not be any limit cycles in this system.
3. [20 points] Consider the problem $u_{t}=u_{x x}$ with homogeneous Dirichlet boundary conditions in $(0,1)$ and $u(x, 0)=x$. Solve the PDE by separating the variables, applying the boundary conditions and then the initial condition.
4. [20 points] Consider the wave equation $u_{t t}=c^{2} u_{x x}$ and the diffusion equation $u_{t}=k u_{x x}$.
(a) Prove the uniqueness of the solution for the wave equation in $(0, l)$ with initial conditions $u(x, 0)=\phi(x), u_{t}(x, 0)=\psi(x)$, and boundary conditions $u_{x}(0, t)=0$, $u_{x}(l, t)=0$, by means of the energy method.
(b) For the diffusion equation, prove the uniqueness of its solution with initial condition $u(x, 0)=\phi(x)$ and with homogeneous Dirichlet boundary conditions using the maximum principle.
(c) Prove the same thing as in (b), but now using the energy method.
5. [20 points] Solve the PDE ,

$$
u_{t}+[(1-u) u]_{x}=0, \quad(x \in R, t>0) .
$$

for the two initial conditions given below. For each case, does the solution exist globally? Explain your answer, and plot the solutions for typical times.
a) $u_{1}(x, 0)=\left\{\begin{array}{lll}0 & \text { if } & x \leq 0 \\ x & \text { if } & 0<x \leq 1 \\ 1 & \text { if } & x>1\end{array}\right.$
b) $u_{2}(x, 0)=\left\{\begin{array}{lll}1 & \text { if } & x \leq 0 \\ 1-x & \text { if } & 0<x \leq 1 \\ 0 & \text { if } & x>1\end{array}\right.$
6. [20 points]
a) Solve the 2D Laplace's equation $\Delta u=0$, in the exterior of a disk $(r>1)$ with boundary condition $u(1, \theta)=3+2 \cos (4 \theta)-\sin (2 \theta)$, and the condition that u must be bounded as $r \rightarrow \infty$.
b) Solve the radially symmetric equation $\Delta u=12$ on the domain $a<r<b$ in R^{3}, with vanishing boundary conditions.
7. [20 points] Consider a system of $x(t) \in R$ governed by

$$
\frac{d^{2} x}{d t^{2}}+2 \alpha \frac{d x}{d t}+x-x^{2}=0, \quad \text { constant } 0<\alpha<1 .
$$

a) Find the equilibrium points, and classify them by type and stability.
b) Draw the phase portrait in the $\left(x, \frac{d x}{d t}\right)$ plane, and describe the qualitative behavior of the system.

