UMass Amherst Algebra Advanced Exam

Friday January 16, 2014, 10AM – 1PM.

Instructions: To pass the exam it is sufficient to solve five problems including a least one problem from each of the three parts. Show all your work and justify your answers carefully.

1. Group theory and representation theory

Q1. Suppose G is a group with 60 elements with the further property that the order of the center of G is divisible by 4. Show that G is abelian.

Q2. Let G be a finite group and let N be a normal subgroup of index a prime p. Let C be a conjugacy class of G which is contained in N. Show that either C is still a conjugacy class in N or else splits into p conjugacy classes of equal size.

Q3. Let \mathbb{F}_q be the finite field of order q. Let G be the group of invertible affine linear maps

$$g \colon \mathbb{F}_q \to \mathbb{F}_q, \quad x \mapsto ax + b.$$

where $a \in \mathbb{F}_q \setminus \{0\}$ and $b \in \mathbb{F}_q$, with the group law being composition of maps.

- (a) List the conjugacy classes of G.
- (b) Determine the abelianization of G.
- (c) Compute the dimensions of the irreducible complex representations of G.
- (d) By its definition G acts on the set \mathbb{F}_q . Let ρ be the associated permutation representation. Then we can write $\rho = \rho_1 \oplus \rho'$ where ρ_1 is the trivial representation. Compute the character of ρ' and show that ρ' is irreducible.

2. Commutative Algebra

Q4. Let R be a principal ideal domain. Let A, B, C be finitely generated R-modules such that $A \oplus B \cong A \oplus C$. Show that $B \cong C$.

Q5. Let R be a reduced commutative ring (that is, R has no nonzero nilpotent elements) which has exactly one prime ideal. Prove that R is a field.

Q6. Let R denote the ring $\mathbb{Z}[\sqrt{-5}]$ and p the ideal $(2, 1 + \sqrt{-5}) \subset R$.

(a) Show that p is a prime ideal.

(b) Using the norm

$$N \colon R \to \mathbb{Z}, \quad N(a+b\sqrt{-5}) = a^2 + 5b^2$$

or otherwise, show that p is not a principal ideal.

- (c) Let $S = R \setminus p$ and consider the localization $S^{-1}R$ of R at p. Show that the ideal $S^{-1}p \subset S^{-1}R$ is principal.
 - 3. FIELD THEORY AND GALOIS THEORY

Q7. Let
$$\alpha = \sqrt{4 + \sqrt{7}}$$
.

- (a) Find the minimal polynomial f of α over \mathbb{Q} . (You should show carefully that f is irreducible over \mathbb{Q} .)
- (b) Let K be the splitting field of f over \mathbb{Q} . Determine the Galois group $\operatorname{Gal}(K/\mathbb{Q})$ of K over \mathbb{Q} .
- **Q8.** Let $F \subset K$ be a Galois extension with Galois group isomorphic to the alternating group A_4 . Let $\alpha \in K$ be an element. Determine the possible values of the degree of the minimal polynomial of α over F.
- **Q9.** Let $f = (x^3 2)(x^2 3)$. Let K be the splitting field of f over \mathbb{Q} . Determine the Galois group $\operatorname{Gal}(K/\mathbb{Q})$ of K over \mathbb{Q} .