DEPARTMENT OF MATHEMATICS AND STATISTICS
UMASS - AMHERST
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January 2014

Work all problems. Show all work. Explain your answers. State the theorems used when-
ever possible. 60 points are needed to pass at the Masters Level and 75 to pass at the Ph.D.
level.

1. Suppose that X is a random variable with density % on the interval (0,2). Let Y be the area of a
circle of radius X.

(a) (8 points) Find the density of Y.

(b) (8 points) Now suppose Xj, ... X, are independent identically distributed random variables each
with density % on the interval (0,2). For large n, find the approximate distribution of X =

LS X, Justify.

(¢) (8 points) Consider random variable Y*, which is the area of a circle of radius X. For large n, find
the approximate distribution of Y*. Justify.

(d) (8 points) Consider random variables Y7, ...Y,,, where Y; is the area of a circle with radius X;. For
large n, is the approximate distribution of Y = % >, Y; the same as the approximate distribution
of Y* in the previous part? Why or why not? If not, how would you find the approximate
distribution of Y'? (you do not need to do the computations, but describe your method)

2. Suppose we toss a fair coin once and let p be the probability of heads. Let X denote the number of
heads and Y denote the number of tails.
(a) (8 points) Prove that X and Y are dependent.

(b) (8 points) Let N ~ Poisson(\) and suppose we toss a fair coin N times. Let X and Y be the

number of heads and tails. Show that X and Y are independent. Hint: you may want to consider
P(X =xz|N =n) and P(X =z,Y =vy).

3. Suppose that (X;,Y7) and (X3, Y2) are independent, each pair distributed bivariate normal, BV N (( 0 ) , ( ;

(a) (8 points) Find the distribution of X; + Y7 and X; — Y] respectively.
(b) (8 points) Show that Cov(X; +Y1,X; — Y1) =0.
(c) (8 points) Let U = (X1 +Y1)?+ (X2 +Y2)2 and V = (X1 —Y1)?+ (X5 — Y3)2. Find the distribution

of U and V respectively. Hint: Use the fact that the sum of squares of standard normal random
variables follows a Chisquare distribution.

(d) (8 points) As a result of (b), together with the fact that X; +Y; and X7 —Y; are jointly distributed
as BVN, they are independent. Therefore, U and V' are independent. Knowing that U and V are
independent, find P(U > V).

The pdf of the x? distribution is
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The pdf of a bivariate normal distribution is
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4. Consider X1, Xs,...X,, ~ iid Bernoulli(p).

a points) Let X,, = 3" . X;/n. Find a value of 7 in terms of p such that n X, —p)/T converges
4 poi Let X, ", X;/n. Find a value of f h that n'/2(X g
in distribution to a standard normal. Justify.

(b) (8 points) Show that 7, = /X, (1 — X,,) converges in probability to 7.

(c) (8 points) Show that n'/?(X,, — p)/#, converges in distribution to a standard normal.
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