Department of Mathematics and Statistics, UMass-Amherst Advanced Exam – Algebra, August 29, 2008

Three hours. In order to pass, you must score 65% and have at least one problem substantially correct from each part. Partial credit will be awarded. Be sure to explain each of your answers. All rings have a multiplicative identity 1.

Part I. Group Theory

- 1. Let Aut(G) denote the automorphism group of a group G.
 - (a) Show that Aut(G) is in fact a group.
 - (b) Describe Aut(G) when G is a cyclic group of order p, a prime number.
 - (c) Let G be finite. Show that if $\operatorname{Aut}(G)$ is cyclic, then G is abelian. Hint: consider the natural homomorphism $G \to \operatorname{Aut}(G)$.
- 2. Show that there are at most 5 isomorphism classes of groups of order 20.

Part II. Rings and Modules

3. A chain of prime ideals of length n in a commutative ring R is an increasing sequence

$$P_0 \subsetneq P_1 \subsetneq P_2 \subsetneq \cdots \subsetneq P_n \subsetneq R$$

where P_i is a prime ideal in R.

- (a) Show that if R is a PID, every chain of prime ideals has length 0 or 1.
- (b) Exhibit a chain of prime ideals of length 2 in $\mathbb{Z}[x]$.
- (c) Find a ring R with a chain of prime ideals of length 2008.
- 4. Let I = (2, x) be the ideal generated by 2 and x in $R = \mathbb{Z}[x]$. Note that $R/I \cong \mathbb{Z}/2\mathbb{Z}$, so the latter is naturally an R-module.
 - (a) Show that the map $\phi: I \times I \to \mathbb{Z}/2\mathbb{Z}$ defined by

$$\phi(a_0 + a_1x + \dots + a_nx^n, b_0 + b_1x + \dots + b_mx^m) = \frac{a_0b_1}{2} \mod 2$$

is R-bilinear and conclude that there is an R-module homomorphism from $I \otimes_R I \to \mathbb{Z}/2\mathbb{Z}$ which sends the pure tensor

$$(a_0 + a_1x + \dots + a_nx^n) \otimes (b_0 + b_1x + \dots + b_mx^m)$$

to $\frac{a_0b_1}{2}$ mod 2.

- (b) Show that $2 \otimes x x \otimes 2$ is nonzero in $I \otimes_R I$.
- 5. Suppose $A, B \in M_n(\mathbb{R})$ are conjugate by a matrix in $GL_n(\mathbb{C})$. Show that they are conjugate by a matrix in $GL_n(\mathbb{R})$.

6. The exponential $\exp(A)$ of a complex matrix A is defined by the power series:

$$\exp(A) = I + A + \frac{A^2}{2} + \frac{A^3}{3!} + \dots + \frac{A^k}{k!} + \dots$$

This series always converge, for any complex matrix.

(a) Using the Jordan canonical form, or otherwise, show that

$$\det(\exp(A)) = e^{\operatorname{tr}(A)},$$

where tr(A) is the trace of A (the sum of the diagonal entries of A).

(b) Compute $\exp(A)$ for

$$A = \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}.$$

Part III. Galois Theory

7. Let $F \subset E$ be fields with $E = F(\alpha)$. If E/F has odd degree, show that $F(\alpha^2) = F(\alpha)$.

8. Construct the subfields of $F = \mathbb{Q}(\zeta_{19})$, where $\zeta_{19} \neq 1$ satisfies $(\zeta_{19})^{19} = 1$. That is, write each subfield in the form $\mathbb{Q}(\alpha)$ for some $\alpha \in F$.