Department of Mathematics and Statistics, UMass-Amherst Advanced Exam - Algebra, August 29, 2008

Three hours. In order to pass, you must score 65% and have at least one problem substantially correct from each part. Partial credit will be awarded. Be sure to explain each of your answers. All rings have a multiplicative identity 1.

Part I. Group Theory

1. Let $\operatorname{Aut}(G)$ denote the automorphism group of a group G.
(a) Show that $\operatorname{Aut}(G)$ is in fact a group.
(b) Describe $\operatorname{Aut}(G)$ when G is a cyclic group of order p, a prime number.
(c) Let G be finite. Show that if $\operatorname{Aut}(G)$ is cyclic, then G is abelian. Hint: consider the natural homomorphism $G \rightarrow \operatorname{Aut}(G)$.
2. Show that there are at most 5 isomorphism classes of groups of order 20 .

Part II. Rings and Modules

3. A chain of prime ideals of length n in a commutative ring R is an increasing sequence

$$
P_{0} \subsetneq P_{1} \subsetneq P_{2} \subsetneq \cdots \subsetneq P_{n} \subsetneq R,
$$

where P_{i} is a prime ideal in R.
(a) Show that if R is a PID, every chain of prime ideals has length 0 or 1 .
(b) Exhibit a chain of prime ideals of length 2 in $\mathbb{Z}[x]$.
(c) Find a ring R with a chain of prime ideals of length 2008.
4. Let $I=(2, x)$ be the ideal generated by 2 and x in $R=\mathbb{Z}[x]$. Note that $R / I \cong \mathbb{Z} / 2 \mathbb{Z}$, so the latter is naturally an R-module.
(a) Show that the map $\phi: I \times I \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ defined by

$$
\phi\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}, b_{0}+b_{1} x+\cdots+b_{m} x^{m}\right)=\frac{a_{0} b_{1}}{2} \bmod 2
$$

is R-bilinear and conclude that there is an R-module homomorphism from $I \otimes_{R} I \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ which sends the pure tensor

$$
\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) \otimes\left(b_{0}+b_{1} x+\cdots+b_{m} x^{m}\right)
$$

to $\frac{a_{0} b_{1}}{2} \bmod 2$.
(b) Show that $2 \otimes x-x \otimes 2$ is nonzero in $I \otimes_{R} I$.
5. Suppose $A, B \in \mathrm{M}_{n}(\mathbb{R})$ are conjugate by a matrix in $\mathrm{GL}_{n}(\mathbb{C})$. Show that they are conjugate by a matrix in $\mathrm{GL}_{n}(\mathbb{R})$.
6. The exponential $\exp (A)$ of a complex matrix A is defined by the power series:

$$
\exp (A)=I+A+\frac{A^{2}}{2}+\frac{A^{3}}{3!}+\cdots+\frac{A^{k}}{k!}+\ldots
$$

This series always converge, for any complex matrix.
(a) Using the Jordan canonical form, or otherwise, show that

$$
\operatorname{det}(\exp (A))=e^{\operatorname{tr}(A)}
$$

where $\operatorname{tr}(A)$ is the trace of A (the sum of the diagonal entries of A).
(b) Compute $\exp (A)$ for

$$
A=\left[\begin{array}{cc}
5 & -2 \\
-2 & 5
\end{array}\right] .
$$

Part III. Galois Theory

7. Let $F \subset E$ be fields with $E=F(\alpha)$. If E / F has odd degree, show that $F\left(\alpha^{2}\right)=F(\alpha)$.
8. Construct the subfields of $F=\mathbb{Q}\left(\zeta_{19}\right)$, where $\zeta_{19} \neq 1$ satisfies $\left(\zeta_{19}\right)^{19}=1$. That is, write each subfield in the form $\mathbb{Q}(\alpha)$ for some $\alpha \in F$.
