Advanced Exam – Algebra August 2007

Passing Standard: It is sufficient to do five problems correctly, including at least one from each of the four parts.

I: Group theory

- 1. Let G be a finite group. Assume that there is $g \in G$ with conjugacy class consisting of exactly two elements. Show that G contains a non-trivial proper normal subgroup N.
- 2. Prove that (up to isomorphism) there is a unique non-abelian group of order $2007 = 3^2 \cdot 223$ containing an element of order 9.

II: Ring theory

- 3. Let \mathbf{R} denote the field of real numbers. Let A denote a commutative \mathbf{R} algebra which is two-dimensional as an \mathbf{R} -vector space. (Recall that this
 simply means that A is a commutative ring containing \mathbf{R} as a subring; Athen becomes an \mathbf{R} -vector space in the obvious way, and we are assuming
 that it has dimension two.) Prove that A is isomorphic to one of the three
 rings: $\mathbf{R} \times \mathbf{R}$, \mathbf{C} , $\mathbf{R}[x]/(x^2)$.
- 4. Let R be a commutative ring. Let I, J_1, J_2 be ideals of R.
 - (a) Show that if $I \subseteq J_1 \cup J_2$, then $I \subseteq J_1$ or $I \subseteq J_2$.
 - (b) Let P be a prime ideal of R. Show that if $I \subseteq J_1 \cup J_2 \cup P$, then $I \subseteq J_1$ or $I \subseteq J_2$ or $I \subseteq P$.

III: Modules

5. Let R be a principal ideal domain and let A,B,C be torsion (i.e., rank 0) R-modules. Prove that if

$$\operatorname{Hom}_{R}(A \otimes_{R} B, C) \neq 0$$
,

then there is a non-zero prime ideal P of R such that each of the modules A/PA, B/PB, C/PC is non-zero.

6. Determine all similarity classes of 3×3 matrices A over \mathbf{F}_2 satisfying $A^6 = I$.

IV: Field theory

- 7. Fix a prime p and let \mathbf{F}_{p^2} denote the field with p^2 elements.
 - (a) Define an injective ring homomorphism

$$\varphi: \mathbf{F}_{p^2} \hookrightarrow M_2(\mathbf{F}_p)$$

with $M_2(\mathbf{F}_p)$ the ring of 2×2 matrices over \mathbf{F}_p . (Hint: choose a basis for \mathbf{F}_{p^2} over \mathbf{F}_p .)

- (b) For which $\alpha \in \mathbf{F}_{p^2}$ is $\varphi(\alpha)$ diagonalizable over \mathbf{F}_p ?
- (c) Is there $\alpha \in \mathbf{F}_{p^2}$ such that $\varphi(\alpha)$ is similar (over $\overline{\mathbf{F}}_p$) to a matrix

$$\left(\begin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array}\right)$$

with $\lambda \in \overline{\mathbf{F}}_p$?

8. Let L/K be a Galois extension of fields with Galois group isomorphic to the symmetric group S_4 . For which integers n do there exist $\alpha \in L$ of degree n over K? Justify your answer.

1