Advanced Exam - Algebra
 August 2007

Passing Standard: It is sufficient to do five problems correctly, including at least one from each of the four parts.

I: Group theory

1. Let G be a finite group. Assume that there is $g \in G$ with conjugacy class consisting of exactly two elements. Show that G contains a non-trivial proper normal subgroup N.
2. Prove that (up to isomorphism) there is a unique non-abelian group of order $2007=3^{2} \cdot 223$ containing an element of order 9 .

II: Ring theory

3. Let \mathbf{R} denote the field of real numbers. Let A denote a commutative \mathbf{R} algebra which is two-dimensional as an \mathbf{R}-vector space. (Recall that this simply means that A is a commutative ring containing \mathbf{R} as a subring; A then becomes an \mathbf{R}-vector space in the obvious way, and we are assuming that it has dimension two.) Prove that A is isomorphic to one of the three rings: $\mathbf{R} \times \mathbf{R}, \mathbf{C}, \mathbf{R}[x] /\left(x^{2}\right)$.
4. Let R be a commutative ring. Let I, J_{1}, J_{2} be ideals of R.
(a) Show that if $I \subseteq J_{1} \cup J_{2}$, then $I \subseteq J_{1}$ or $I \subseteq J_{2}$.
(b) Let P be a prime ideal of R. Show that if $I \subseteq J_{1} \cup J_{2} \cup P$, then $I \subseteq J_{1}$ or $I \subseteq J_{2}$ or $I \subseteq P$.

III: Modules

5. Let R be a principal ideal domain and let A, B, C be torsion (i.e., rank 0) R-modules. Prove that if

$$
\operatorname{Hom}_{R}\left(A \otimes_{R} B, C\right) \neq 0
$$

then there is a non-zero prime ideal P of R such that each of the modules $A / P A, B / P B, C / P C$ is non-zero.
6. Determine all similarity classes of 3×3 matrices A over \mathbf{F}_{2} satisfying $A^{6}=I$.

IV: Field theory

7. Fix a prime p and let $\mathbf{F}_{p^{2}}$ denote the field with p^{2} elements.
(a) Define an injective ring homomorphism

$$
\varphi: \mathbf{F}_{p^{2}} \hookrightarrow M_{2}\left(\mathbf{F}_{p}\right)
$$

with $M_{2}\left(\mathbf{F}_{p}\right)$ the ring of 2×2 matrices over \mathbf{F}_{p}. (Hint: choose a basis for $\mathbf{F}_{p^{2}}$ over \mathbf{F}_{p}.)
(b) For which $\alpha \in \mathbf{F}_{p^{2}}$ is $\varphi(\alpha)$ diagonalizable over \mathbf{F}_{p} ?
(c) Is there $\alpha \in \mathbf{F}_{p^{2}}$ such that $\varphi(\alpha)$ is similar (over $\overline{\mathbf{F}}_{p}$) to a matrix

$$
\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

with $\lambda \in \overline{\mathbf{F}}_{p}$?
8. Let L / K be a Galois extension of fields with Galois group isomorphic to the symmetric group S_{4}. For which integers n do there exist $\alpha \in L$ of degree n over K ? Justify your answer.

