Sketch of a solution to Problem 12 Section 1.1

Math 523H - Prof. Nahmod

We start with \Longrightarrow : ie. we want to prove that is $P \in \mathcal{F}$ satisfies the properties (a) and (b) then \leq -as defined in the problem- satisfies properties (O1)-(O5).

Proof of (O1): Let $x, y \in \mathcal{F}$ by the definition of \leq we need to show that that either $(y-x) \in P$ or $(x-y) \in P$ or y=x.

Since \mathcal{F} is a field, if x and y are in \mathcal{F} , then -x and hence y + (-x) = y - x are in \mathcal{F} . Let's call z = y - x. By (a) then we know that either $z \in P$, $-z \in P$ or z = 0. That is either $(y - x) \in P$, $-(y - x) \in P$ or y - x = 0.

But additive inverses are unique so by P1) P2) and P4 we have that -(y-x) = (x-y). and by P1) P3) and P4) we have that y-x=0 implies y=x

Hence all in all we have that either $(y-x) \in P$, $(x-y) \in P$ or y=x as desired.

Proof of (O2): Suppose that both $x \le y$ and $y \le x$. To say $x \le y$ means that $(y-x) \in P$ or x = y. And to say that $y \le x$ means that $(x-y) \in P$ or x = y.

But if we suppose that $(y - x) \in P$; then -(y - x) = (x - y) (as we showed above) is not in P. And hence we must have x = y. But x = y means y - x = 0 which contradicts (a) since we are assuming $(y - x) \in P$.

A similar argument gives a contradiction if we suppose that $(x - y) \in P$.

Therefore we must have that x = y.

Proof of (O3): If $x \leq y$ then $(y - x) \in P$ or x = y. If $y \leq z$ then $(z - y) \in P$ or y = z.

Now if $(y-x) \in P$ and $(z-y) \in P$ then $(z-y) + (y-x) \in P$ by (b). Therefore $z + (-y+y) - x \in P$ by P2) and $z + 0 - x \in P$ by P4). By P3) we then have that $z - x \in P$. Then $x \le z$.

If $(y-x) \in P$ and y=z then y-x=z-x so $x \le z$.

If $(z-y) \in P$ and x=y then z-y=z-x so $x \le z$.

If z = y and x = y then z = x, so $x \le z$.

Proof of (04): If $x \leq y$ then either $(y-x) \in P$ or x=y. If $(y-x) \in P$, $y-x+0 \in P$. Since z+(-z)=0 we then have that $(y-x)+(z+(-z)) \in P$. By P1) and P2) then $(y+z)-(x+z) \in P$ which means that $x+z \leq y+z$ as desired. If x=y then x+z=y+z; therefore $x+z \leq y+z$ once again.

Proof of (O5): If $x \leq y$ and $0 \leq z$ then either $(y - x) \in P$ or x = y and either z = 0 or $z \in P$.

If z = 0, then xz = 0 = yz (by homework problem 4- also proved in class); so in this case $xz \le yz$.

If x = y then xz = yz so $xz \le yz$.

If $z \in P$ and $(y - x) \in P$, then $z(y - x) \in P$ by (b). Now, by P9) $zy - zx \in P$. By P5) we see that $yz - xz \in P$. Therefore $xz \le yz$.

Next we prove \Leftarrow : ie. we need to prove that if \leq satisfies the properties (O1)-(O5) then P satisfies the properties (a) and (b).

Proof of (a): By (O1) either $x \le 0$ or $x \ge 0$. And by (O2) if $x \ne 0$ then exactly one of the following hold: either $x \le 0$ or $x \ge 0$. If $x \le 0$ and $x \ne 0$ then $(0-x) = -x \in P$. If $x \ge 0$ and $x \ne 0$ then $(x-0) = x \in P$. Hence (a) holds.

Proof of (b): First part: let $x \in P$ and $y \in P$. Then $0 \le x$ and $0 \le y$. Then by P3) and (O4) we have that

$$0 \le y = 0 + y \le x + y$$

that is $0 \le x + y$ which means that $x + y - 0 = x + y \in P$ as desired.

Second part: since x, y are in P, we have that $0 \le x$ and $0 \le y$; and we also have that $x \ne 0$ and $y \ne 0$ by (a) which we have independently proved already. By (O5) then $0y \le xy$. And by homewrok problem 4 we have then that $0 \le xy$ since 0 = 0y. Therefore $xy \in P$ ($x \ne 0, y \ne 0$ so $xy \ne 0$).