Sketch of a solution to Problem 12 Section 1.1

Math 523H - Prof. Nahmod

We start with \Longrightarrow : ie. we want to prove that is $P \in \mathcal{F}$ satisfies the properties (a) and (b) then \leq-as defined in the problem- satisfies properties (O1)-(O5).

Proof of (O1) : Let $x, y \in \mathcal{F}$ by the definition of \leq we need to show that that either $(y-x) \in P$ or $(x-y) \in P$ or $y=x$.

Since \mathcal{F} is a field, if x and y are in \mathcal{F}, then $-x$ and hence $y+(-x)=y-x$ are in \mathcal{F}. Let's call $z=y-x$. By (a) then we know that either $z \in P,-z \in P$ or $z=0$. That is either $(y-x) \in P,-(y-x) \in P$ or $y-x=0$.

But additive inverses are unique so by P 1) P 2) and P 4 we have that $-(y-x)=$ $(x-y)$. and by P1) P3) and P4) we have that $y-x=0$ implies $y=x$

Hence all in all we have that either $(y-x) \in P,(x-y) \in P$ or $y=x$ as desired.
Proof of (O2): Suppose that both $x \leq y$ and $y \leq x$. To say $x \leq y$ means that $(y-x) \in P$ or $x=y$. And to say that $y \leq x$ means that $(x-y) \in P$ or $x=y$.

But if we suppose that $(y-x) \in P$; then $-(y-x)=(x-y)$ (as we showed above) is not in P. And hence we must have $x=y$. But $x=y$ means $y-x=0$ which contradicts (a) since we are assuming $(y-x) \in P$.

A similar argument gives a contradiction if we suppose that $(x-y) \in P$.
Therefore we must have that $x=y$.
Proof of (O3): If $x \leq y$ then $(y-x) \in P$ or $x=y$. If $y \leq z$ then $(z-y) \in P$ or $y=z$.

Now if $(y-x) \in P$ and $(z-y) \in P$ then $(z-y)+(y-x) \in P$ by (b). Therefore $z+(-y+y)-x \in P$ by P2) and $z+0-x \in P$ by P4). By P3) we then have that $z-x \in P$. Then $x \leq z$.

If $(y-x) \in P$ and $y=z$ then $y-x=z-x$ so $x \leq z$.
If $(z-y) \in P$ and $x=y$ then $z-y=z-x$ so $x \leq z$.
If $z=y$ and $x=y$ then $z=x$, so $x \leq z$.
Proof of (04): If $x \leq y$ then either $(y-x) \in P$ or $x=y$. If $(y-x) \in P$, $y-x+0 \in P$. Since $z+(-z)=0$ we then have that $(y-x)+(z+(-z)) \in P$. By $\mathrm{P} 1)$ and P 2$)$ then $(y+z)-(x+z) \in P$ which means that $x+z \leq y+z$ as desired.

If $x=y$ then $x+z=y+z$; therefore $x+z \leq y+z$ once again.
Proof of (O5): If $x \leq y$ and $0 \leq z$ then either $(y-x) \in P$ or $x=y$ and either $z=0$ or $z \in P$.

If $z=0$, then $x z=0=y z$ (by homework problem 4- also proved in class); so in this case $x z \leq y z$.

If $x=y$ then $x z=y z$ so $x z \leq y z$.
If $z \in P$ and $(y-x) \in P$, then $z(y-x) \in P$ by (b). Now, by P9) $z y-z x \in P$. By P5) we see that $y z-x z \in P$. Therefore $x z \leq y z$.

Next we prove \Longleftarrow : ie. we need to prove that if \leq satisfies the properties (O1)(O5) then P satisfies the properties (a) and (b).

Proof of (a): By (O1) either $x \leq 0$ or $x \geq 0$. And by (O2) if $x \neq 0$ then exactly one of the following hold : either $x \leq 0$ or $x \geq 0$. If $x \leq 0$ and $x \neq 0$ then $(0-x)=-x \in P$. If $x \geq 0$ and $x \neq 0$ then $(x-0)=x \in P$. Hence (a) holds.

Proof of (b): First part: let $x \in P$ and $y \in P$. Then $0 \leq x$ and $0 \leq y$. Then by P3) and (O4) we have that

$$
0 \leq y=0+y \leq x+y
$$

that is $0 \leq x+y$ which means that $x+y-0=x+y \in P$ as desired.
Second part: since x, y are in P, we have that $0 \leq x$ and $0 \leq y$; and we also have that $x \neq 0$ and $y \neq 0$ by (a) which we have independently proved already. By (O5) then $0 y \leq x y$. And by homewrok problem 4 we have then that $0 \leq x y$ since $0=0 y$. Therefore $x y \in P(x \neq 0, y \neq 0$ so $x y \neq 0)$.

