
Some hints for Problems in Sections 2.2 and 2.4

Math 523H – Andrea R. Nahmod

Problem 9– Section 2.2 For part (a) the guess is the limit is a = 4. To show this first
prove using the recursive definition of the sequence that

|an+1 − 4| =
1
2
|an − 4|

=
1
22

|an−1 − 4|

= . . .

=
1
2n

|a1 − 4|(1)

and then argue that given any ε > 0 there exists an n0 such that this last expression (1) can
be made less than ε provided n ≥ n0.

For part (b) you need to guess on your own what the limit should be. There are several
ways of doing this. One quick way is to note that if the sequence defined by

an+1 = α an + 2

converges then its limit –call it ‘a’– should satisfy an equation of the form

(2) a = α a + 2

where we have used the properties of limits in section 2.2 and the uniqueness of a limit. From
(2) we deduce that a = 2

1−α . This is now ‘your guess”. To prove that the sequence indeed
converges to this limit you should proceed as above to show that

|an+1 −
2

1− α
| = |α||an −

2
1− α

|

= |α|2|an−1 −
2

1− α
|

= . . .

= |α|n|a1 −
2

1− α
|(3)

and then argue that given any ε > 0 there exists an n0 such that this last expression (3) can
be made less than ε provided n ≥ n0 using that |α| < 1. Note that the specific value of a1 is
irrelevant; think of |a1 − 2

1−α | as some fixed number C > 0 in solving for n.
Note: there are other ways to guessing what ‘a’ should be for example by trying to deduce a
pattern from part (a).

Problem 7– Section 2.4 First note that in the definition of Cauchy and without any loss
of generality one can assume that given n ≤ m. Then note that by adding and subtracting
all the intermediate terms and using the triangle inequality we have that

|an − am| ≤ |an − an+1| + |an+1 − an+2| + . . . · · · + |am−1 − am|
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Recall that
∑m

k=n 2−k ≤ 2 2−n and that given any ε > 0 there is an n0 ∈ N such that

2 2−n0 < ε.

Hence for all n ≥ n0, 2 2−n ≤ 2 2−n0 < ε.

Problem 9 – Section 2.4 First observe that by definition the sequence is monotone
increasing. Hence if a1 > 0 and if the sequence were to converge then its limit –let’s call it
‘a’– could not be zero. You wish to prove it diverges. Argue by contradiction assuming first
it does converge to ‘a’ (which we know it’s not zero). Then from the recursive equation

an+1 = an +
1
an

using the properties of limits in 2.2 (and the uniqueness of a limit) you would have the limit
satisfy an equation of the form

a = a +
1
a

which implies that 1
a = 0 which is absurd, hence a contradiction. Note you absolutely needed

to know a %= 0 for this argument; otherwise you cannot claim that limn→∞
1

an
= 1

a .
Therefore, the sequence cannot converge to a finite limit. Next use the fact the sequence

is monotone increasing to conclude it must diverge to +∞ (since it does not converge and
is monotonic it cannot be bounded (why?). Hence it grows with no bound and thus satisfies
the definition of divergence to +∞ – check all this!).

Problem 13 – Section 2.4 To prove bn is bounded is easy: {an} is bounded so |an| ≤M
for some M > 0 and for all n ≥ 1 Hence by the triangle inequality |a1 + · · · + an| ≤ n M
whence

|bn| ≤
n M

n
= M.

Monotone is a bit harder... but you should bear in mind {an} is monotone and bounded.
One way to do it is as follows: first, prove that

(4) bn ≤ an+1.

This is easy similar to the argument above to show it’s bounded but using now a1, a2, . . . , an

are all less than or equal to an+1 by monotonicity.
Then a trick is to rewrite bn+1 as (check!)

(5) bn+1 = bn
n

(n + 1)
+

an+1

(n + 1)

and using that you have already proved in (4) that an+1 ≥ bn make this last expression (5)
bigger than or equal to bn .
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