M523Honors: Introduction to Modern Analysis
 Homework

Spring 2012
Note: Do not turn in yet the Special Projects nor problems followed by an asterisk *. I'll announce when these are due.

Assignment 1. Due Thursday February 16th 2012.

Extra Problem 1*: Show that $(\mathbb{C},+, \cdot)$ as defined in class is a field.
From Section 1.1: $\quad 1,3,4,5,6 a), 7,10,11,12 *$

From Section 1.2: $\quad 1,2,3,5 \mathrm{a}), 5 \mathrm{~d}), 6 \mathrm{a}), 6 \mathrm{~b}), 6 \mathrm{c}), 7 \mathrm{a}), 7 \mathrm{~b}), 7 \mathrm{~d}), 9 \mathrm{~b}), 10$.
From Section 1.3: 1, 3, 5, 7, 8, 9*.

Assignment 2. Due Thursday February 232012.

From Section 1.4: $\quad 1,4,7,8,9,10 a) c$) 11a)
(In 10c) f^{2} means $[f(x)]^{2}$ and not $f \circ f$)
From Section 2.1: 1, 2, 3, 4, 5, 7
Assignment 3. Due Thursday March 8th 2012.

From Section 2.2: 1, 2, 3, 4, 5(modified), 7, 8, 9.
Problem 5(modified) Prove theorem 2.26 in the special case when $a_{n}=1$. That is prove $\frac{1}{b_{n}} \rightarrow \frac{1}{b}$ under the same hypothesis. I will post a handout for the general case later.

From Section 2.4: 1, 2, 3, 5, 6, 7, 9, 13.
Special Project I: Do Project \#1 at the end of Chapter 2.
Assignment 4. Due Thursday March 15th 2012.
From Section 1.3 Problem 9
From Section 2.5: 1, 3(modified), 4, 5, 7, 8.

Problem 3(modified). Suppose a set S of real numbers is bounded and let η be a lower bound for S. Show that η is the greatest lower bound of S if and only if for every $\varepsilon>0$ there is an element of S in the interval $[\eta, \eta+\varepsilon]$

Assignment 5. Due Thursday March 29th 2012.
Extra Problem 2* Prove the existence of greatest lower bounds just as we proved the existence of least upper bound in Theorem 2.5.1

From Section 2.6: 1, 2, 3, 4, 6, 8, 9, 10, 11, 13.
Special Project II: Do Problem 14 of Section 2.4.
Special Project III: Do Project \#5 at the end of Chapter 2 (page 70)
Assignment 6. Due Thursday 4/12/2012.
From Section 3.1 : 2, 4, 5, 7, 8a)b), 9, 11.
Assignment 7. Due Thursday 4/19/2012.
From Section $3.2: 1,3,4,5,7,10,11$.
From Section 3.3: 1, 2, 3, 4, 5, 7, 12, 14, 15.
Assignment 8. Due Tuesday 5/1/2012.
From Section 3.5: 1, 2, 3, 7, 8.
From Section 5.1: 2, 7, 8, 12.
From Section 5.2: 1, 2a), 6.
Hints For 5.1\#7: for each $n \geq 1$ choose an x in $[0,1]$ such that $n x=1$. Call that x, x_{n} and compute $f_{n}\left(x_{n}\right)$.

For 5.1\#8: for each $n \geq 1$ choose an x in $[0,1]$ such that $\frac{x}{n}=1$. Call that x, x_{n} and compute $f_{n}\left(x_{n}\right)$.

For 5.1\#12: Given $\varepsilon>0$, write $\left|f_{n}\left(x_{n}\right)-f\left(x_{0}\right)\right| \leq\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right|$ and find $N=N(\varepsilon)$ so that (a) the first term on the r.h.s of the inequality is less than $\varepsilon / 2$ thanks to the uniform convergence of f_{n} to f; (b) the second term on the r.h.s of the inequality is less than $\varepsilon / 2$ thanks to the continuity of f

For 5.2\#2a): first prove that the sequence of functions $f_{n}(x)=\left(x+\frac{1}{n}\right)^{2}$ converges uniformly to the function $f(x)=x$ on $[0,1]$ as n goes to infinity. Then use Theorem 5.2.2 to compute.

For 5.2\#6: Denote by f the limiting function and write $\left|f_{n}(x)\right| \leq\left|f_{n}(x)-f(x)\right|+|f(x)|$.
First note that since the convergence is uniform on $[0,1], f$ must be continuous (why?) and hence bounded (why?). Second, prove that there exists N (think of $\varepsilon=1$) such that for all $n \geq N$ the first term on the right hand side is less than 1 . Third, note that each of the remaining functions $f_{n}, 1 \leq n \leq N-1$ is continuous and bounded on $[0,1]$ (and there are only a finite $N-1$, a finite number of them).

Finally, put all the ingredients together to conclude!

Special Projects (Due no later than 1PM on Friday 5/04/12)

Special Project I: Do Project \#1 at the end of Chapter 2 (page 68)
Special Project II: Do Problem 14 of Section 2.4
Special Project III: Do Project \#5 at the end of Chapter 2 (page 70)
Special Project IV: Do Problem 13 of Section 3.2

Special Project V:

Let f be a continuous function on \mathbb{R} such that the improper integral $\int_{-\infty}^{\infty} f(x) d x<\infty$.
Let f_{n} be a sequence of continuous functions defined on \mathbb{R} such that f_{n} converge uniformly to f on every finite, closed interval $[a, b]$ of \mathbb{R}.

Suppose that there exists a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that:
(i) $g(x) \geq 0$
(ii) the improper integral $\int_{-\infty}^{\infty} g(x) d x<\infty$,
(iii) for all $n \geq 1$ and all $x \in \mathbb{R}$ we have that $\left|f_{n}(x)\right| \leq g(x)$ and also $|f(x)| \leq g(x)$.
(a) Prove that each of the improper integrals $\int_{-\infty}^{\infty} f_{n}(x) d x<\infty$
(b) Prove that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f_{n}(x) d x=\int_{-\infty}^{\infty} f(x) d x
$$

 ∞ then the limit in M of the sequence $\int_{-M}^{M} g(x) d x$ of real numbers (why are each of these finite?) exists.

Hence given $\varepsilon>0$ there exists an $M_{0}=M_{0}(\varepsilon)>0$ such that

$$
\left|\int_{-\infty}^{\infty} g(x) d x-\int_{-M}^{M} g(x) d x\right|=\left|\int_{|x|>M} g(x) d x\right| \leq \varepsilon \quad M \geq M_{0}
$$

To prove part for b), you need to consider

$$
\left|\int_{-\infty}^{\infty} f_{n}(x) d x-\int_{-\infty}^{\infty} f(x) d x\right|=\left|\int_{-\infty}^{\infty}\left(f_{n}(x)-f(x)\right) d x\right|
$$

Next, rewrite the r.h.s in (\dagger) as the sum of two integrals, one over the set $|x| \leq M$ and the other over the set $|x|>M$ and use triangle inequality to bound (\dagger) by

$$
\left|\int_{|x| \leq M}\left(f_{n}(x)-f(x)\right) d x\right|+\left|\int_{|x|>M}\left(f_{n}(x)-f(x)\right) d x\right| .
$$

Use uniform convergence over the set $|x| \leq M$. For the integral over the set, $|x|>M$, use triangle inequality, the hypothesis (iii) and part (b) to bound each term by integrals over $|x|>M$ of $g(x)$.

Put all the pieces together to conclude!.

