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Abstract By analyzing the local and infinitesimal behavior of degenerating polarized vari-
ations of Hodge structure the notion of infinitesimal variation of Hodge structure at infinity
is introduced. It is shown that all such structures can be integrated to polarized variations of
Hodge structure and that, conversely, all are limits of infinitesimal variations of Hodge struc-
ture at finite points. As an illustration of the rich information encoded in this new structure,
some instances of the maximal dimension problem for this type of infinitesimal variation are
presented and contrasted with the “classical” case of IVHS at finite points.
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1 Introduction

It is a well known fact in mathematics that most of the interesting features of a map are
encoded in its singular behavior. The Hodge theoretic version of the previous statement
is that the interesting features of a polarized variation of Hodge structure (PVHS) can be
described by analyzing its degenerating behavior. The purpose of this note is to start the
exploration of the first order behavior of PVHS, from the perspective of a degenerating point,
that is, a point at infinity.

Carlson et al. [4] introduced the idea of infinitesimal variation of Hodge structure (IVHS)
as a way of associating to a PVHS an object with interesting linear algebraic invariants.

J. Fernandez (B)
Instituto Balseiro, Universidad Nacional de Cuyo–C.N.E.A., Bariloche, R8402AGP, República Argentina
e-mail: jfernand@ib.edu.ar

E. Cattani
Department of Mathematics, University of Massachusetts, Amherst, MA 01003-9305, USA
e-mail: cattani@math.umass.edu

123



Geom Dedicata

Basically, if we represent locally a PVHS as an integral manifold of Griffiths’ exterior
differential system as in [4] or [11], then an IVHS is an integral element of the differen-
tial system.

Since IVHS are useful in the analysis of PVHS, we introduce a similar notion associated
to degenerating PVHS. Infinitesimal variations of Hodge structure at infinity (IVI) are intro-
duced in Definition 1. This idea is already implicit in the construction of compactifications
in [3] as well as in [10].

Using the local description of PVHS near infinity [6,7,12] we are able to prove in Theo-
rem 3 that every IVI integrates to a PVHS and that every IVI is a limit of IVHS at infinity.

We claim that IVIs encode more refined information of a PVHS than an IVHS does for
finite points. In order to illustrate this statement we look into the maximal dimension problem
for IVIs, and contrast this case with the results known for IVHS.

Given the weight and Hodge numbers of a PVHS, Carlson et al. [5] and Mayer [11]
find sharp upper bounds for the maximal dimension of an IVHS, which we call the CKTM
bounds. Even though the CKTM bounds remain valid and sharp for IVIs if one considers all
possible nilpotent orbits on a given period domain, considering only IVIs with underlying
particular mixed Hodge structures or nilpotent cones leads to lower maximal dimensions,
corresponding to the stronger control that the nilpotent orbit imposes on the possible IVIs.

Finally, we see that, in some cases, for a given nilpotent orbit, there are non-conjugate
IVIs of maximal dimension, a phenomenon that doesn’t occur for IVHS due to rigidity.

Section 2 briefly reviews some results in asymptotic Hodge theory and infinitesimal vari-
ations of Hodge structure. Section 3 introduces the notion of infinitesimal variation of Hodge
structure at infinity and studies the integrability of such objects. Section 4 explores some
properties of the maximal dimension problem for IVIs.

2 Preliminaries

The study of the degenerating behavior of variations of Hodge structure is the result of the
work of Griffiths, Deligne, Schmid, Cattani and Kaplan, among others. We refer to [7] for a
description of the subject as well as references to the original papers.

We consider a finite dimensional R-vector space VR and its complexification V = C⊗ VR
with the induced conjugation v "→ v. A (real) Hodge structure (HS) of weight k on VR is
defined by a grading H∗,k−∗ of V subject to the conditions

V = ⊕a Ha,k−a and Ha,k−a = Hk−a,a for all a.

The numbers ha,k−a = dim Ha,k−a are called the Hodge numbers of the structure. The
subspaces Fa = ⊕b≥a Hb,k−b form a decreasing filtration of V . Conversely, given such a
filtration subject to V = Fa ⊕ Fk−a+1 for all a, the subspaces Ha,k−a = Fa ∩ Fk−a define
a HS of weight k on VR.

A polarized Hodge structure (PHS) of weight k on VR is given by a HS of weight k on
VR, H∗,k−∗, and a nondegenerate bilinear form Q on V defined over R, such that:

(1) Q(u, v) = (−1)k Q(v, u) for all u, v ∈ V ,
(2) Q(Ha,k−a, Hb,k−b) = 0 if a + b *= k and
(3) the Hermitian form Q(CH ·, ·) is positive definite, where CH v = ia−bv for v ∈ Ha,b.

If V is the vector space underlying a PHS with form Q, we denote by GC = O(V, Q)

the group of isometries and by GR the subgroup of GC preserving VR. The Lie algebras of
GC and GR are denoted by gC and gR, respectively.
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All PHS of weight k and fixed Hodge numbers are parametrized by a space denoted by D
(see [12, Sect. 3]). In order to describe D we consider the space of all flags of V of appropriate
dimension that satisfy the orthogonality condition (2). This is a subvariety of the correspond-
ing flag manifold; it is called the compact dual space of D and is denoted by Ď. GC acts
transitively on Ď, so that Ď + GC/B where B ⊂ GC is a parabolic subgroup. The space
D ⊂ Ď corresponds to all flags that satisfy, in addition to (2), the positivity condition (3).
D is an open subspace and GR acts transitively on D.

A filtration F∗ ∈ Ď defines a filtration of gC by FagC = {X ∈ gC : X (Fb) ⊂ Fa+b}.
When F∗ ∈ D, it also defines a Hodge structure of weight 0 on gR with the grading of gC
given by

gs,−s
C = {X ∈ gC : X (Ha,k−a) ⊂ Ha+s,k−a−s}, (1)

where H∗,k−∗ is the grading associated to F∗.
A mixed Hodge structure (MHS) on VR consists of a pair of filtrations of V , (W∗, F∗),

W∗ real and increasing, F∗ decreasing, such that F∗ induces a HS of weight a on GrW∗
a for

each a.
Given any nilpotent N ∈ gl(V ), there is a filtration W (N )∗ of V called its weight filtration

(see [8, p. 468]). This filtration is the unique increasing filtration that satisfies N (Wl) ⊂ Wl−2
and Nl : GrW∗

l → GrW∗
−l is an isomorphism.

A polarized mixed Hodge structure (PMHS) [7, 1.16] of weight k on VR consists of a
MHS (W∗, F∗) on VR, a nilpotent element N ∈ (F−1gC ∩ gR) and a nondegenerate bilinear
form Q such that

(1) N k+1 = 0,
(2) W∗ = (W (N )[−k])∗, where W [−k] j = W j−k ,
(3) Q(Fa, Fk−a+1) = 0 and,
(4) the HS of weight k + l induced by F∗ on ker(Nl+1 : GrW∗

k+l → GrW∗
k−l−2) is polarized

by Q(·, Nl ·).
A PVHS [7, Sect. 1] over a manifold M determines a holomorphic map ! : M → D/",

where " ⊂ GC is a discrete subgroup; ! is called the period mapping. The map ! is
also locally liftable and horizontal. Horizontality in this context means that Im d! is con-
tained in the GC-homogeneous subbundle ThĎ ⊂ T Ď with fiber, over F∗ ∈ Ď, given by
F−1gC/F0gC ⊂ gC/F0gC; ThĎ is called the horizontal bundle. When F∗ ∈ D, (ThĎ)F∗ =
g−1,1

C as defined by (1).
Our main interest is the asymptotic behavior of ! near the boundary of M , with respect

to some compactification M where M − M is a divisor with normal crossings. Such com-
pactifications exist if, for instance, M is quasiprojective. Locally at infinity we may as well
replace M by some product of punctured discs and discs, so that

! :
(
#∗)r × #m → D/".

Since the r th-power of the upper half plane, Ur is the universal cover of (#∗)r , we can lift
! to Ur × #m . We still refer to this induced map by !. We denote by z = (z j ), t = (tl)
and s = (s j ) the coordinates on Ur , #m and (#∗)r respectively. By definition, we have
s j = e2π i z j .

A nilpotent orbit is a horizontal map

θ : Cr → Ď, θ(z) = exp




r∑

j=1

z j N j



 · F∗
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where F∗ ∈ Ď, {N1, . . . , Nr } ⊂ (F−1gC ∩ gR) is a commuting subset of nilpotent elements
and there is α ∈ R such that θ(z) ∈ D for Im(z j ) > α. We usually denote a nilpotent orbit
by {N1, . . . , Nr ; F∗} and the cone C(N1, . . . , Nr ) =

{∑
λ j N j : λ j ∈ R>0

}
is called the

nilpotent cone of the orbit. Even if nilpotent orbits are analytic objects by definition, they
can be algebraically characterized as asserted by the following result ([7, Theorem 2.3]) that,
in turn, puts together important results of several authors.

Theorem 1 If {N1, . . . , Nr ; F∗} is a nilpotent orbit, then

(1) N k+1
j = 0 where k is the weight of the PHS in D.

(2) Every N ∈ C(N1, . . . , Nr ) defines the same weight filtration W C
∗ .

(3) ((W C [−k])∗, F∗) is a PMHS, polarized by every N ∈ C(N1, . . . , Nr ).

Conversely, if F∗ ∈ Ď, and {N1, . . . , Nr } are commuting nilpotent elements of F−1gC ∩ gR
that satisfy the conditions 1, 2 and 3 for some N ∈ C(N1, . . . , Nr ), then {N1, . . . , Nr ; F∗}
is a nilpotent orbit.

By Schmid’s nilpotent orbit theorem [12, 4.12], there is a nilpotent orbit {N1, . . . , Nr ; F∗}
associated to any degenerating PVHS !; in this case, N j is the logarithm of the unipotent
part of the monodromy.

In order to make the relationship between period mappings and their nilpotent orbits more
precise, recall that there is a canonical bigrading {I ∗,∗} associated with any MHS (W∗, F∗). It
is uniquely characterized by the property I p,q ≡ I q,p mod (⊕a<p,b<q I a,b) (see [8, 2.13]).
This bigrading induces, in turn, a bigrading I ∗,∗gC of (W∗gC, F∗gC).

Set

pa = ⊕q I a,qgC and g− = ⊕a≤−1pa . (2)

It is immediate that if (W∗, F∗) is a MHS, (ThĎ)F∗ = F−1gC/F0gC + p−1. Also, gC =
g− ⊕ StabGC(F∗), so that (g−, X "→ exp(X) · F∗) provides a local model for the GC-homo-
geneous space Ď near F∗. We recall from [7, Sect. 2] that we can represent a degenerating
PVHS ! by

!(z, t) = exp




r∑

j=1

z j N j



 · exp("(exp(2π i z), t)) · F∗ (3)

where (N1, . . . , Nr ; F∗) is the nilpotent orbit and " : #r × #m → g− is holomorphic. It is
possible to rewrite

!(z, t) = exp(X (z, t)) · F∗ (4)

for a holomorphic X : Ur × #m → g−. In particular,

X−1(z, t) =
r∑

j=1

z j N j + "−1(exp(2π i z), t), (5)

where the −1 subscript denotes the p−1 part of the corresponding application.
In terms of X , recalling the GC-homogeneity of ThĎ, the horizontality of ! is expressed

by:

exp(−X) d exp(X) ∈ p−1 ⊗ T ∗(Ur × #m).
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In fact, since the p−1-part of exp(−X) d exp(X) is d X−1, the horizontality condition can be
written as

exp(−X) d exp(X) = d X−1. (6)

It follows from this last expression that

d X−1 ∧ d X−1 = 0. (7)

The next result, which follows from [7, Theorem 2.8] and [6, Theorem 2.7], shows that
the nilpotent orbit together with the p−1-valued holomorphic function "−1 completely deter-
mines the local behavior of the variation:

Theorem 2 Let {N1, . . . , Nr ; F0} be a nilpotent orbit and R : #r × #m → p−1 be a holo-
morphic map with R(0, 0) = 0. Define X−1(z, t) = ∑r

j=1 z j N j + R(s, t), s j = e2π i z j , and
suppose that the differential equation (7) holds. Then, there exists a unique period mapping

!(s, t) = exp



 1
2π i

r∑

j=1

log(s j )N j



 · exp("(s, t)) · F0,

defined in a neighborhood of the origin in #r+m such that "−1 = R.

The importance of this last theorem is that the information contained in a degenerating
PVHS is encoded in the data of a nilpotent orbit and a holomorphic map satisfying the
integrability condition (7).

Last, we turn to the first order content of a PVHS. The analysis of the differential of the
period mapping at a point F∗ ∈ D led to the following definition [4, Sect. 1.c]. An infini-
tesimal variation of Hodge structure (IVHS) at F∗ ∈ D consists of a pair (T, δ), where T
is a finite dimensional vector space and δ ∈ hom(T, (ThĎ)F∗) = hom(T, g−1,1

C ) such that
Im(δ) is an abelian subspace of g−1,1

C ⊂ gC. In other words:

δ : T → ⊕p hom(H p,k−p, H p−1,k−p+1) is linear (8)

δ(ξ1) ◦ δ(ξ2) = δ(ξ2) ◦ δ(ξ1) for all ξ1, ξ2 ∈ T (9)

Q(δ(ξ)ψ, η) + Q(ψ, δ(ξ)η) = 0 for all ψ ∈ H p,k−p, η ∈ H p−1,k−p+1. (10)

The 1-forms that annihilate ThĎ generate the differential ideal that is known as Griffiths’
exterior differential system. It turns out that, because of (9), all IVHS are integral elements of
that system. It is also known [11, Proposition 3.15] that every integral element of Griffiths’
system can be integrated to a germ of an integral manifold of the system which, in Hodge
theoretic terms, says that all IVHS arise from (germs of) PVHS.

3 Infinitesimal variations at infinity

By analogy with the “classical” study of the first order behavior of a PVHS at a point F∗ ∈ D
via IVHS, we want to analyze the first order behavior of a degenerating PVHS at a point
F∗ ∈ Ď, that is, at infinity.

Suppose that ! is a degenerating PVHS with nilpotent orbit {N1, . . . , Nr ; F∗}. We will
study how the tangent spaces to the image of !—that is, the IVHSs associated to !— behave
as ! degenerates at F∗.
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We find the tangent spaces to the variation by computing d!w0 for w0 in a neighborhood
W of infinity. Following the description given in [9, p. 17 and 18] we consider:

d!w0 : (T W )w0 → (ThĎ)!(w0) ⊂ ⊕a hom
(

Gr!(w0)
a , Gr!(w0)

a−1

)
.

If {I ∗,∗} is the bigrading associated to the limiting MHS of ! at F∗ ∈ Ď, the subspaces
J ∗ = ⊕q I ∗,q ⊂ V form a grading of F∗. Using the GC-action on V and the form (4)
for !, we define L∗ = exp(X (w0))J ∗, a grading of !(w0). There are then isomorphisms
hom(Gr!(w0)

a , Gr!(w0)
a−1 ) + hom(La, La−1) + hom(J a, J a−1), with the last isomorphism

being conjugation by exp(X (w0)). Putting together the different identifications we have

d!w0 : (T W )w0 → ⊕a hom
(
J a, J a−1) ⊂ gC.

We claim that under the last representation, d! = d X−1. To prove the claim, we have to
show that d!w0 = exp(X (w0))d X−1|w0 exp(−X (w0)).

Observe that if πJ a denotes the projection from V onto the J a factor and, analogously,
for the L∗ grading, πLa = eX (w0)πJ a e−X (w0).

Define ∂ j = ∂
∂w j

|w0 . In order to compute d!w0(∂ j )(exp(X (w0))v0) for v0 ∈ J a , fol-
lowing the computation described on pages 17 and 18 of [9], a curve through exp(X (w0))v0
and contained in exp(X (w))J a for w near w0 is needed. Such a curve can be constructed
considering exp(X (w))v0. All together:

exp(−X (w0))d!w0(∂ j ) exp(X (w0))v0 = exp(−X (w0))πLa−1(∂ j (exp(X (w))v0))

= πJ a−1(exp(−X (w0))(∂ j (exp(X (w))v0)))

= πJ a−1(exp(−X (w0))(∂ j (exp(X (w)))v0)).

By (6), we have exp(−X (w0))∂ j (exp(X (w))) = ∂ j (X−1) ∈ p−1. So that

exp(−X (w0))d!w0(∂ j ) exp(X (w0))v0 = d X−1|w0v0

and the claim follows. Therefore, using (5),

Im d!(s,t) = Im d X−1
∣∣
(s,t) = SpanC

(

N j + "−1

∂s j

∣∣∣∣
(s,t)

2π is j ,
∂"−1

∂tl

∣∣∣∣
(s,t)

for all j, l

)

.

Since s = 0 is an accumulation point of points where d! has maximal rank, we can
consider the limit of the corresponding tangent spaces which, by the holomorphicity of "−1
at (0, 0), satisfy

lim
s→0,t→0

Im d!(s,t) = SpanC

(
N j ,

∂"−1

∂tl

∣∣s=0,t=0 for all j, l
)

.

If we let

a!
∞ = SpanC

(
N j ,

∂"−1

∂tl

∣∣s=0,t=0 for all j, l
)

, (11)

we have just seen that the IVHSs associated to !—their images in the corresponding Grass-
manian—have a!

∞ as a limit point. Since all those subspaces are abelian, we conclude that
a!

∞ is also abelian.
Abstracting the features of a!

∞ we arrive to the following definition.
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Definition 1 Given a period domain D, an infinitesimal variation of Hodge structure at infin-
ity (IVI) is a pair ({N1, . . . , Nr ; F∗}, a), where {N1, . . . , Nr ; F∗} is a nilpotent orbit in Ď and,
for p−1 is defined by (2), a ⊂ p−1 is an abelian subspace such that SpanC (N1, . . . , Nr ) ⊂ a.
The dimension of an IVI is the dimension of a.

Our previous discussion can be extended now to the following result relating IVIs to
degenerating PVHS.

Theorem 3 Let !: Ur × #m → D be a degenerating PVHS with nilpotent orbit
{N1, . . . , Nr ; F∗}. Also, let a!

∞ be defined by (11), where "−1 is the holomorphic func-
tion associated to ! by (3). Then, ({N1, . . . , Nr ; F∗}, a!

∞) is an IVI. Moreover, every IVI is
of this form.

Proof The previous discussion shows that a!
∞ is an abelian subspace of gC that, by construc-

tion, is contained in p−1 and contains the nilpotent cone of the nilpotent orbit
{N1, . . . , Nr ; F∗} associated with !. Therefore, ({N1, . . . , Nr ; F∗}, a!

∞) is an IVI.
Conversely, if ({N1, . . . , Nr ; F ·}, a) is an IVI, let {B1, . . . , Bl} be a basis of a com-

plement of SpanC(N1, . . . , Nr ) in a. Then define the map "−1 : #r × Cl → p−1 by
"−1(s, t) = ∑l

j=1 t j B j .
Define X−1(z, t) = ∑r

j=1 z j N j + "−1(s, t), as in (5). Then, since all the elements of
a commute with each other, condition (7) holds so that, by Theorem 2, X−1 extends to a
degenerating PVHS ! with the given nilpotent orbit. Since ∂"−1

∂tl
= Bl , it follows that the

given IVI arises from !. 34
Remark 1 As part of the previous analysis we found that, under the corresponding identifi-
cations, d! = d X−1. In fact, under this interpretation, the integrability condition (7) says
that d X−1, and then d!, are Higgs fields.

The notion of IVI introduced above is richer than that of IVHS in that it encodes infor-
mation about the nilpotent orbit as well as the holomorphic part of a degenerating PVHS. In
the next section we will illustrate this statement with several examples.

4 Abelian subalgebras

IVHS have appeared in connection with several geometric problems including Torelli the-
orems, the Noether–Lefshchetz theorems and the Yukawa coupling (in physics!). Another
application has been the study of bounds on the dimension of variations of Hodge structure,
as started by Carlson [1]. In this section we want to illustrate the notion of IVI by contrasting
some examples and results with those available for IVHS.

The problem of classifying IVHS is quite hard. Still, the following result holds ([5, The-
orem 1.6], [11, Theorem 4.15]).

Theorem 4 If F∗ ∈ D and a ⊂ g−1,1
C ⊂ gC is an abelian subspace, then dim a ≤ q(k, h),

where q is an explicit piecewise quadratic function of the weight k and the Hodge numbers
h p,q . Furthermore, the bounds are sharp.

In the same setting, Mayer generalized partial results of Carlson [1] to the effect that, except
for some small dimensional cases, maximal dimensional Abelian subalgebras generate rigid
variations [11, Theorem 5.1].

Our first observation is that IVIs satisfy the bounds of Theorem 4. Indeed, by Theorem 3,
any IVI can be integrated to a PVHS of the same dimension. Moreover, we will show below
that there are IVIs of the maximal dimension.
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Proposition 1 For weight k = 2 and any Hodge numbers h∗,k−∗, there are IVIs whose
dimension is q(k, h).

Remark 2 For simplicity, we are stating Proposition 1 only for k = 2. The result can be
proved for arbitrary weight using the same techniques, as it is described in Remark 5.

Before we start the proof of Proposition 1 we will make explicit the bounds of Theo-
rem 4 [5, Theorem 1.6], in the case k = 2.

If h2,0 > 1 : q(2, h) =
{

1
2 h2,0(h1,1 − 1) + 1, if h1,1 is odd,
1
2 h2,0h1,1, if h1,1 is even.

If h2,0 = 1 : q(2, h) = h1,1.
The following technical results are needed to prove Proposition 1.

Lemma 1 Let V be a vector space underlying a PHS of weight k with polarizing form Q
and Hodge numbers h∗,k−∗. Suppose that {J ∗,∗} is a bigrading of V and ja,b = dim J a,b so
that the following properties are satisfied:
(1) J a,b = J b,a for all a, b.
(2) ja,b = j k−b,k−a for all a, b.
(3) h p,k−p = ∑

b j p,b for all p.
(4) ja+1,b+1 ≤ ja,b for all a, b with a + b ≥ k.
(5) Q(J a,b, J a′,b′

) = 0 unless a + a′ = k and b + b′ = k.

Then, if F p = ⊕a≥p,b J a,b, and Wl = ⊕a+b≤l J a,b, there exist N ∈ gR such that
(W [−k]∗, F∗, N ) is a PMHS.

Proof This is only a sketch: the details are an exercise in linear algebra. First notice that,
by condition 1, (W∗, F∗) defines a MHS split over R. Then, conditions 1, 2, 3 and 4 imply
the existence of N ∈ gl(VR) such that W∗ = W (N )∗ and N is a (−1, −1) morphism of the
MHS. Last, condition 5 implies that N can be chosen in gR and so that (W [−k]∗, F∗, N ) is
a PMHS. 34

Lemma 2 For any weight, k, and Hodge numbers, h∗,k−∗, let ja,b ∈ Z≥0 be such that condi-
tions 2, 3 and 4 in Lemma 1 hold. Then there are bigradings {J ∗,∗} of V with ja,b = dim J a,b

such that the rest of the conditions of Lemma 1 hold.

Remark 3 Combining Lemmas 1 and 2 we see that it suffices to set dimensions satisfy-
ing adequate compatibility conditions to ensure the existence of PMHS with bigrading of
dimensions given by the given data.

Notice that by the symmetry conditions, it is sufficient to set compatible values of ja,b

for a + b ≥ k and a ≥ b. In what follows, we will usually set the values of some ja,b, with
the others determined either by symmetry or, otherwise, are 0.

Proof of Proposition 1 We start with the case h2,0 > 1.
Suppose h1,1 is odd. There are two possibilities to consider:

• 2h2,0 > h1,1 − 1. By Lemma 2, given dimensions j2,1 = 1
2 (h1,1 − 1), j2,0 = h2,0

− 1
2 (h1,1 − 1), j1,1 = 1 there are MHS {J ∗,∗} with the right dimensions, polarized by

some N . As an illustration of the ideas used in the proof of Lemma 2, we will con-
struct the bigrading {J ∗,∗} explicitly. Q has signature (2h2,0, h1,1) so that we can split
V = V1 ⊕V2 ⊕V3 with dim V1 = 1, dim V2 = 2(h1,1 −1) and dim V3 = 2h2,0 −h1,1 +1
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and so that the signature of Q|Vi is (0, 1), (h1,1 − 1, h1,1 − 1) and (2h2,0 − h1,1 + 1, 0)

respectively. Split V2 = I1⊕ I2 with I j real and isotropic, dim I j = h1,1−1. Notice that Q
induces I2 + I ∗

1 . Write I1 = K1⊕K1, and under the previous isomorphism I2 = K2⊕K2

where K2 + K ∗
1 . Finally, V3 = W ⊕ W with W isotropic, dim W = h2,0 − 1

2 (h1,1 − 1).
Now define J 1,1 = V1, J 2,1 = K1, J 1,2 = K1, J 1,0 = K2, J 0,1 = K2, J 2,0 = W
and J 0,2 = W . Then the bigrading {J ∗,∗} satisfies the conditions of Lemma 1 so that it
induces a PMHS.
Any map X̃ ∈ hom(J 2,1, J 1,0) can be extended to a map X ∈ p−1 (p∗ as defined by (2))
such that X |J 1,2 ∈ hom(J 1,2, J 0,1) is dual to X̃ , using condition 5 in Lemma 1, and
X vanishes elsewhere. The same argument shows that any φ̃ ∈ hom(J 2,0, J 1,1) and
ψ̃ ∈ hom(J 2,0, J 1,0) extend to maps φ,ψ ∈ p−1. All of this may be schematized as
follows:

J 2,1

X

!!

J 1,2

X

!!

ψ

""!!
!!

!!
!!

J 2,0
φ ##

ψ

""!!
!!

!!
!!

J 1,1
φ ## J 0,2

J 1,0 J 0,1

(12)

Let a1 and a2 be respectively the spaces of all the maps X and ψ constructed as above.
Clearly a1 and a2 are abelian. Moreover, any map φ commutes with a1 ⊕ a2. For a fixed
φ *= 0, define the abelian subspace a = a1 ⊕ a2 ⊕ C{φ} ⊂ p−1. We have dim a =
dim a1 + dim a2 + 1 = ( j2,1)2 + j2,0 j2,1 + 1 = h2,0

(
h1,1−1

2

)
+ 1.

Any N ∈ J −1,−1gC automatically satisfies N ∈ a1. For a given N which polarizes the
MHS under consideration, by Theorem 1, there are nilpotent orbits {N1, . . . , Nr ; F∗} such
that N is in the relative interior of C(N1, . . . , Nr ). Since all N j ∈ J −1,−1gC, N j ∈ a1.
Thus ({N1, . . . , Nr ; F∗}, a) is an IVI.
Notice that in this case we can have a nilpotent cone of maximal dimension ( j2,1)2.

• 2h2,0 ≤ h1,1 − 1. Consider a PMHS whose bigrading satisfies j2,1 = h2,0, j1,1 =
h1,1 − 2h2,0. As in the previous case, any X̃ ∈ hom(J 2,1, J 1,0) and φ̃ ∈ hom(J 2,1, J 1,1)

extend to maps X, φ ∈ p−1. This is described by:

J 2,1

X

!!

φ

""!!
!!

!!
!!

J 1,2

X

!!

J 1,1

φ

""!!
!!

!!
!!

J 1,0 J 0,1

Since Q|J 1,1 is positive definite, we can choose a splitting J 1,1 = L ⊕ K ⊕ K where
dim L = 1, K is isotropic and L and K are orthogonal.
Let a1 and a2 be respectively the spaces of maps X and τ generated by X̃ ∈ hom(J 2,1,

J 1,0) and τ̃ ∈ hom(J 2,1, K ). Then a1 ⊕ a2 is abelian. Also, any fixed map ψ̃ ∈
hom(J 2,1, L) induces a map ψ ∈ p−1 that commutes with a1 ⊕ a2. Thus a = a1 ⊕
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a2 ⊕ C{ψ} ⊂ p−1 is an abelian subspace with dim a = dim a1 + dim a2 + 1 =
( j2,1)2 + 1

2 j2,1( j1,1 − 1) + 1 = 1
2 h2,0(h1,1 − 1) + 1.

The construction of the IVI then concludes as in the previous case.

The case with h1,1 even is done along the same lines as h1,1 odd.
Now suppose that h2,0 = 1. If h1,1 ≥ 2, we consider a PMHS whose bigrading has

j2,1 = 1, j1,1 = h1,1 − 2 and is polarized by N :

J 2,1

N

!!

ψ ##

φ

""!!
!!

!!
!!

J 1,2

N

!!

J 1,1

φ

""!!
!!

!!
!!

J 1,0
ψ ## J 0,1

Then, there is a space of dimension h1,1 − 2 of maps φ, together with C{N } and C{ψ} for
any fixed ψ *= 0. They all commute, making an abelian space of dimension h1,1, as required.

The cases when h2,0 = 1 and h1,1 < 2 are immediate but notice that there is no logarithmic
part (i.e., r = 0). 34

Remark 4 In a few places during in the proof of Proposition 1 we picked a map among
many possible choices. For instance, in the case shown in diagram (12), we chose a map φ

to enlarge the abelian subspace a1 ⊕ a2. One may ask if it could be possible to enlarge the
resulting abelian subspace even more by adding other such maps. On general grounds, the
answer is no, since the dimension of the resulting abelian subspace would have to satisfy
the CKTM bounds, and the examples constructed in the proof are of maximal dimension.
More explicitly, in the case of diagram (12), if φ′ is like φ and commutes with φ, it is easy
to check that φ′ ∈ C{φ}, so that further enlargement is not possible.

Remark 5 The proof of Proposition 1 in arbitrary weight follows along similar lines. Indeed,
the proof of the sharpness of the bound in [5] is made by showing, for each set of Hodge
numbers, a specific IVHS of the maximal dimension. This IVHS is constructed out of four
types of basic examples, combined appropriately by direct sums and tensor products. Hence,
it suffices to show that each one of these basic types can be realized by a IVI. In the proof
of Proposition 1, we introduced two of the four basic types needed. The other two are con-
structed similarly and analogous results for direct sums and tensor products complete the
argument.

The maximal dimension of IVHS depends, by Theorem 4, on the weight k and the Hodge
numbers of the structures. Proposition 1 shows that by taking appropriate nilpotent orbits and
abelian spaces, it is always possible to achieve the maximal dimension given by the CKTM
bounds on a given period domain D with IVIs. The next example will show that, for a given
period domain, the maximal dimension problem for IVIs with a given underlying MHS can
be more stringent.

Example 1 Here we describe all the classes of IVIs arising as degenerations of PVHS of
weight k = 2 and h2,0 = h1,1 = 3.

Table 1 shows the different possible cones and the maximal dimension of the IVIs in each
case.
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Table 1 MHS, nilpotent cones and IVIs obtained when k = 2 and h2,0 = h1,1 = 3

j∗,∗ Nilpotent cones Max dim of IVI

j2,0 = j1,1 = 3 {0} 4

j2,1 = j1,1 = 1 and j2,0 = 2 1 cone of dimension 1 4

j2,2 = 1, j2,0 = 2 and j1,1 = 3 Cones of dimension 1, 2 and 3 In all cases 3

j2,2 = j1,1 = j2,1 = j2,0 = 1 Cones of dimension 1 and 2 In all cases 3

j2,2 = 2, j2,0 = 1 and j1,1 = 3 Cones of dimension 1, 2 and 3 In all cases 3

j2,2 = j1,1 = 3 Cones of dimension 1, 2 and 3 In all cases 3

Remark 6 The first two rows of Table 1 correspond to MHS where the maximal dimension
of IVIs coincides with the CKTM bound. The remaining rows correspond to MHS where the
maximal dimension of IVIs is smaller, for all nilpotent cones.

It is conceivable that the notion of IVI could be attached to that of MHS rather than to
the nilpotent orbit as we do. The following example will show that for a given MHS, the
maximal dimension of the IVIs still depends on the full nilpotent orbit.

Example 2 Consider the MHS in weight k = 2, defined by j2,2 = j1,1 = 2d . As in the
previous constructions, any φ̃ ∈ hom(J 2,2, J 1,1) induces a map φ ∈ p−1. The condition
for the commutativity of any two such morphisms becomes φ̃t

2φ̃1 = φ̃t
1φ̃2, where φ̃t is

the dual map of φ̃ under Q. Fix real bases of V where the bilinear form Q is given by


I2d

−I2d
I2d



. With respect to such bases, the matrix of φ̃t is the transpose of the matrix

of φ̃. For 1 ≤ a ≤ 2d , define Ña ∈ hom(J 2,2, J 1,1) with respect to the same bases as
above, by the matrices Ña = Ea,a whose only nonzero entry is a 1 in the (a, a)-position.
Define also N0 = ∑2d

a=1 Na . Clearly N0 polarizes the MHS {J ∗,∗}. Then, {N0; J ∗,∗} and
{N1, . . . , N2d ; J ∗,∗} are nilpotent orbits whose associated MHS is {J ∗,∗}.

Now, we want to find the maximal dimension of the IVIs for these nilpotent orbits.

(1) {N1, . . . , N2d ; J ∗,∗}. In this case, the commutation with all the Na forces the elements of
the abelian subspace containing the cone to be given by diagonal matrices in C2d×2d . So,
any maximal abelian subspace has, at most, dimension 2d . Since the space of diagonal
matrices is abelian, contains the nilpotent cone and has dimension 2d , the maximal
dimension of IVIs with the given nilpotent orbit is 2d .

(2) {N0; J ∗,∗}. In this case, the abelian subspaces containing the nilpotent cone are simply
those containing the identity matrix. This condition forces the matrices representing φ̃

to be symmetric. In particular, the subspace of all the matrices of the form
(

aI + i B B
B aI − i B

)

for B ∈ Cd×d symmetric and a ∈ C, is abelian, contains the identity matrix and has
dimension 1

2 d(d +1)+1. So, the maximal dimension of IVIs having the given nilpotent
orbit is, at least, 1

2 d(d + 1) + 1. It will follow from Proposition 2 that this is, in fact,
the maximal dimension.

Finally, since for d ≥ 3, 1
2 d(d + 1) + 1 > 2d , we conclude that the maximal dimension

depends on the nilpotent orbit and not just on the MHS.
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Remark 7 In order to study the maximal dimension of IVIs whose underlying MHS is fixed, it
is enough to consider one dimensional variations, that is, nilpotent orbits with nilpotent cone
generated by one element. This is so since if ({N1, . . . , Nr ; F∗}, a) is an IVI and N = ∑

N j
then {N ; F∗} is a nilpotent orbit with the same underlying MHS, so that ({N ; F∗}, a) is an
IVI of the same dimension with a one dimensional nilpotent cone.

The general problem of finding the maximal dimension of IVIs with a given nilpotent orbit
is quite complex. Below, we concentrate on one particular case to see some of its features.

Consider the following MHS of weight k of Hodge-Tate type polarized by N0:

J k,k

N0

!!
J k−1,k−1

N0
!!
...

N0

!!
J 1,1

N0

!!
J 0,0

(13)

with dim J a,a = n for 0 ≤ a ≤ k. We will denote this structure by {J, N0}.
First notice that any map φ ∈ p−1 commuting with the polarizing N0 is completely

determined by φ̃ = φ|J k,k . Indeed, since for 0 ≤ a < k, N0|J a+1,a+1 : J a+1,a+1 → J a,a

is an isomorphism, given va ∈ J a,a (for 0 ≤ a < k) there exists vk ∈ J k,k such that
va = N k−a

0 (vk). Therefore, φ(va) = φ(N k−a
0 (vk)) = N k−a

0 (φ(vk)).
The problem can be phrased in terms of matrices. In order to do that, notice that J k,k is a

pure Hodge structure of weight 2k polarized by Qk(·, ·) = Q(·, N k
0 (·)) which is symmetric

nondegenerate and positive definite (on the real vector space underlying J k,k). Then, there is
a Qk-orthonormal basis Bk = {vk

1, . . . vk
n} of J k,k . Using N0 we define Ba = {va

1 , . . . , va
n },

where va
j = N k−a

0 (vk
j ) for a = k − 1, . . . , 0 and j = 1, . . . , n. The set B = ∪k

a=0B j is

a (real) basis of ⊕a J a,a . If [φ̃]Bk ,Bk−1 is the matrix of φ̃ with respect to the corresponding
bases, the conditions φ ∈ gC and commutativity with N0 become that [φ̃]Bk ,Bk−1 ∈ Cn×n

is symmetric, while commutativity of any two morphisms becomes commutativity of the
respective matrices in the standard way.

In this case, the maximal dimension problem for any k and ha,k−a = n for 0 ≤ a ≤ k
reduces to that of finding maximal dimensional abelian subalgebras of symmetric matrices
in gl(n, C).

A first simplification comes from writing gl(n, C) = sl(n, C) ⊕ C and restricting to the sl
part. The bound over gl will be 1 unit higher and is realized, for example, by the direct sum
of a subalgebra maximizing dimension in sl and the linear span of the identity matrix. Using
the Cartan decomposition sl(n, R) = k ⊕ p that can be interpreted as the decomposition of
trace zero matrices as the sum of antisymmetric and symmetric matrices, we reduce the max-
imal dimension problem for symmetric matrices to that of finding the maximal dimensional
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abelian subalgebras of sl(n, C) contained in p. That maximal dimension has been obtained
by Carlson and Toledo using root system techniques. They conclude in [2, Sect. 6] that this
maximal dimension (for subalgebras in p) is

{
1
2α(α + 1) + β for n = 2α + β > 1 and β = 0, 1.

0 for n = 1.

Furthermore, they show that for even n all maximal dimensional abelian subalgebras are con-
jugate while for odd n, there are two conjugacy classes. All together we have the following
result.

Proposition 2 Let {N0; J } be the nilpotent orbit of weight k of (13), with dim J p,p = n for
0 ≤ p ≤ k. Then, the maximal dimension of any IVI ({N0; J }, a) is

{
1
2α(α + 1) + β + 1 for n = 2α + β > 1 and β = 0, 1.

1 for n = 1.

Furthermore, up to conjugation, there is only one maximal dimension IVI for n even and two
for n odd.

Remark 8 It is easy to show either using Lie algebra theory or as a nice elementary com-
putation [6, Theorem 5.5] that the maximal dimension of abelian subspaces of symmetric
elements of gl(n, R) is n. This result implies that the maximal dimension of the nilpotent
cone for this MHS is n.

We close with a comment regarding future work. Carlson observed that the maximal
dimensions given by Theorem 4 seem to be much larger than the naturally occurring PVHS:
for instance, hypersurface variations are maximal PVHS of smaller dimension [5]. A question
remains as to what are the extra conditions that characterize the “more natural” PVHS [1].
It would be very interesting to see if the IVIs play a role in this respect since they provide a
finer classification than the IVHS and so could be linked to specific degenerating behavior
of the “more natural” PVHS.
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